미분의 응용(Application of Differentiation)
최댓값과 최솟값(Maximum and Minimum Values)
[PDF]
[영상(YouTube)]
극값정리(The Extreme Value Theorem)
[PDF]
[영상(YouTube)]
Fermat's Theorem
Rolle's Theorem
The Mean Value Theorem
$f'(x)=0 \text{ on } (a,b) \Rightarrow f(x)=c \text{ on } (a,b)$
$f'(x)=g'(x) \text{ on } (a,b) \Rightarrow f(x)=g(x)+c \text{ on } (a,b)$
Increasing/Decreasing Test
The First Derivative Test
concave upward and concave downward
오목 검사(Concavity Test)
[PDF]
[영상(YouTube)]
[Geogebra Tube]
inflection point
The Second Derivative Test
$\displaystyle\lim_{x\rightarrow \infty} f(x) = L : \forall \varepsilon , \exists N \ s.t. \ x>;N \Rightarrow |f(x)-L|>\varepsilon $
$\displaystyle\lim_{x\rightarrow -\infty} f(x) = L : \forall \varepsilon , \exists N \ s.t. \ x>N \Rightarrow |f(x)-L|>\varepsilon $
$\displaystyle\lim_{x\rightarrow \infty} f(x) = \infty : \forall M , \exists N \ s.t. \ x>N \Rightarrow f(x)>M $
$\displaystyle\lim_{x\rightarrow -\infty} f(x) = \infty : \forall M , \exists N \ s.t. \ x>;N \Rightarrow f(x)>M $