고차미분
(Higher Derivatives)

Higher Derivatives

```
Start
End
```


Definition

Higher Derivatives

Definition

$$
\left(f^{\prime}\right)^{\prime}
$$

Higher Derivatives

Definition

$$
\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}
$$

Definition

$$
\left(f^{\prime}\right)^{\prime}=f^{\prime \prime} \text { the secon derivative of } f
$$

Definition

$$
\left(f^{\prime}\right)^{\prime}=f^{\prime \prime} \text { the secon derivative of } f
$$

$$
\frac{d}{d x}
$$

Definition

$$
\begin{array}{r}
\left(f^{\prime}\right)^{\prime}=f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right)
\end{array}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right)^{2} & =\frac{d^{2} y}{d x^{2}}
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) }
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} &
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} & =f^{\prime \prime \prime}
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} & =f^{\prime \prime \prime} \text { the derivative of secon derivative of } f
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\frac{d}{d x} &
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} & =f^{\prime \prime \prime} \text { the derivative of secon derivative of } f \\
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right) &
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} & =f^{\prime \prime \prime} \text { the derivative of secon derivative of } f \\
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right) & =\frac{d^{3} y}{d x^{3}}
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} & =f^{\prime \prime \prime} \text { the derivative of secon derivative of } f \\
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right) & =\frac{d^{3} y}{d x^{3}} \text { (Leibniz notaion) }
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right)^{2} & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} & =f^{\prime \prime \prime} \text { the derivative of secon derivative of } f \\
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right) & =\frac{d^{3} y}{d x^{3}} \text { (Leibniz notaion) } \\
f^{(n)} &
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} & =f^{\prime \prime \prime} \text { the derivative of secon derivative of } f \\
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right) & =\frac{d^{3} y}{d x^{3}} \text { (Leibniz notaion) } \\
f^{(n)} & \text { the nth derivative of } f
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} & =f^{\prime \prime \prime} \text { the derivative of secon derivative of } f \\
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right) & =\frac{d^{3} y}{d x^{3}} \text { (Leibniz notaion) } \\
f^{(n)} & \text { the nth derivative of } f \\
y^{(n)} &
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} & =f^{\prime \prime \prime} \text { the derivative of secon derivative of } f \\
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right) & =\frac{d^{3} y}{d x^{3}} \text { (Leibniz notaion) } \\
f^{(n)} & \text { the nth derivative of } f \\
y^{(n)} & =f^{(n)}(x)
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right)^{2} & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} & =f^{\prime \prime \prime} \text { the derivative of secon derivative of } f \\
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right) & =\frac{d^{3} y}{d x^{3}} \text { (Leibniz notaion) } \\
f^{(n)} & \text { the nth derivative of } f \\
y^{(n)} & =f^{(n)}(x)=\frac{d^{n} y}{d x^{n}}
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right)^{2} & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} & =f^{\prime \prime \prime} \text { the derivative of secon derivative of } f \\
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right) & =\frac{d^{3} y}{d x^{3}} \text { (Leibniz notaion) } \\
f^{(n)} & \text { the nth derivative of } f \\
y^{(n)} & =f^{(n)}(x)=\frac{d^{n} y}{d x^{n}} \text { (Leibniz notaion) }
\end{aligned}
$$

Definition

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \text { the secon derivative of } f \\
\frac{d}{d x}\left(\frac{d y}{d x}\right)^{2} & =\frac{d^{2} y}{d x^{2}} \text { (Leibniz notaion) } \\
\left(f^{\prime \prime}\right)^{\prime} & =f^{\prime \prime \prime} \text { the derivative of secon derivative of } f \\
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right) & =\frac{d^{3} y}{d x^{3}} \text { (Leibniz notaion) } \\
f^{(n)} & \text { the nth derivative of } f \\
y^{(n)} & =f^{(n)}(x)=\frac{d^{n} y}{d x^{n}} \text { (Leibniz notaion) }
\end{aligned}
$$

Github:
https://min7014.github.io/math20240203001.html
Click or paste URL into the URL search bar, and you can see a picture moving.

