평균 변화율과 순간 변화율
(The average rate of change and the instantaneous rate of change)

The average rate of change and the instantaneous rate of change

The average rate of change and the instantaneous rate of change

Definition

The average rate of change and the instantaneous rate of change

Definition

$y=f(x)$

The average rate of change and the instantaneous rate of change

Definition

$y=f(x)$ is a function.

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x}
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow}
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0}
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2}}
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow}
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}}
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

The instantaneous rate

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

The instantaneous rate of change of y

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

The instantaneous rate of change of y with respect to x

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

The instantaneous rate of change of y with respect to x at $x=x_{1}$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

The instantaneous rate of change of y with respect to x at $x=x_{1}$
The derivative $f^{\prime}(a)$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

The instantaneous rate of change of y with respect to x at $x=x_{1}$
The derivative $f^{\prime}(a)$ is the instantaneous rate

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

The instantaneous rate of change of y with respect to x at $x=x_{1}$
The derivative $f^{\prime}(a)$ is the instantaneous rate of change of $y=f(x)$

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

The instantaneous rate of change of y with respect to x at $x=x_{1}$
The derivative $f^{\prime}(a)$ is the instantaneous rate of change of $y=f(x)$ with respect to x

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

The instantaneous rate of change of y with respect to x at $x=x_{1}$
The derivative $f^{\prime}(a)$ is the instantaneous rate of change of $y=f(x)$ with respect to x when $x=a$.

Definition

$y=f(x)$ is a function.

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\text { The increment of } y}{\text { The increment of } x}=\frac{\Delta y}{\Delta x}
$$

The average rate of change of y whith respect to x over the interval $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

The instantaneous rate of change of y with respect to x at $x=x_{1}$
The derivative $f^{\prime}(a)$ is the instantaneous rate of change of $y=f(x)$ with respect to x when $x=a$.

Github:
https://min7014.github.io/math20240129001.html

Click or paste URL into the URL search bar, and you can see a picture moving.

