a 에서 함수 f 의 미분
(The derivative of a function f at a number a)

The derivative of a function f at a number a

The derivative of a function f at a number a

```
Start

\section*{Definition}

\section*{Definition}

The derivative

\section*{Definition}

The derivative of a function \(f\)

\section*{Definition}

The derivative of a function \(f\) at a number \(a\),

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=
\]

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim
\]

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h}
\]

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h \rightarrow}
\]

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h \rightarrow 0}
\]

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\]

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim
\]

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x}
\]

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow}
\]

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a}
\]

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\]

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\]
if

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\]
if this limit exists.

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\]
if this limit exists.
\(f^{\prime}(a)\) is read " \(f\) prime of \(a\)."

\section*{Definition}

The derivative of a function \(f\) at a number \(a\), denoted by \(f^{\prime}(a)\), is
\[
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\]
if this limit exists.
\(f^{\prime}(a)\) is read " \(f\) prime of \(a\)."

Github:
https://min7014.github.io/math20240112001.html

\section*{Click or paste URL into the URL search bar, and you can see a picture moving.}```

