차의 극한은 극한의 차이다.

(The limit of a difference is the difference of the limits.)

The limit of a difference is the difference of the limits.

Theorem

```
- Start

Theorem
\(\lim _{x \rightarrow a} f(x)=L\)
```

- Start

Theorem
$\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$

```
- Start

Theorem
\(\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M\)
\[
\lim _{x \rightarrow a}\{f(x)-g(x)\}
\]
```

- Start

Theorem
$\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$

$$
\lim _{x \rightarrow a}\{f(x)-g(x)\}=L-M
$$

The limit of a difference is the difference of the limits.

- Start \rightarrow End

Theorem
$\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$

$$
\lim _{x \rightarrow a}\{f(x)-g(x)\}=L-M
$$

Proof.

The limit of a difference is the difference of the limits.

- Start \rightarrow End

Theorem
$\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$

$$
\lim _{x \rightarrow a}\{f(x)-g(x)\}=L-M
$$

Proof.

$$
\lim _{x \rightarrow a}\{f(x)-g(x)\}
$$

The limit of a difference is the difference of the limits.

- Start \rightarrow End

Theorem
$\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$

$$
\lim _{x \rightarrow a}\{f(x)-g(x)\}=L-M
$$

Proof.

$$
\lim _{x \rightarrow a}\{f(x)-g(x)\}=\lim _{x \rightarrow a}\{f(x)+(-1) \cdot g(x)\}
$$

The limit of a difference is the difference of the limits.

- Start \rightarrow End

Theorem

$\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$

$$
\lim _{x \rightarrow a}\{f(x)-g(x)\}=L-M
$$

Proof.

$$
\begin{aligned}
\lim _{x \rightarrow a}\{f(x)-g(x)\} & =\lim _{x \rightarrow a}\{f(x)+(-1) \cdot g(x)\} \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a}\{(-1) \cdot g(x)\}
\end{aligned}
$$

The limit of a difference is the difference of the limits.

- Start \rightarrow End

Theorem

$\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$

$$
\lim _{x \rightarrow a}\{f(x)-g(x)\}=L-M
$$

Proof.

$$
\begin{aligned}
\lim _{x \rightarrow a}\{f(x)-g(x)\} & =\lim _{x \rightarrow a}\{f(x)+(-1) \cdot g(x)\} \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a}\{(-1) \cdot g(x)\}(\because \text { Sum Law })
\end{aligned}
$$

The limit of a difference is the difference of the limits.

- Start \rightarrow End

Theorem

$\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$

$$
\lim _{x \rightarrow a}\{f(x)-g(x)\}=L-M
$$

Proof.

$$
\begin{aligned}
\lim _{x \rightarrow a}\{f(x)-g(x)\} & =\lim _{x \rightarrow a}\{f(x)+(-1) \cdot g(x)\} \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a}\{(-1) \cdot g(x)\}(\because \text { Sum Law }) \\
& =\lim _{x \rightarrow a} f(x)+(-1) \cdot \lim _{x \rightarrow a} g(x)
\end{aligned}
$$

The limit of a difference is the difference of the limits.

- Start \rightarrow End

Theorem

$\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$

$$
\lim _{x \rightarrow a}\{f(x)-g(x)\}=L-M
$$

Proof.

$$
\begin{aligned}
\lim _{x \rightarrow a}\{f(x)-g(x)\} & =\lim _{x \rightarrow a}\{f(x)+(-1) \cdot g(x)\} \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a}\{(-1) \cdot g(x)\}(\because \text { Sum Law }) \\
& =\lim _{x \rightarrow a} f(x)+(-1) \cdot \lim _{x \rightarrow a} g(x)(\because \text { Constant Multiple Law })
\end{aligned}
$$

The limit of a difference is the difference of the limits.

- Start \rightarrow End

Theorem

$\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$

$$
\lim _{x \rightarrow a}\{f(x)-g(x)\}=L-M
$$

Proof.

$$
\begin{aligned}
\lim _{x \rightarrow a}\{f(x)-g(x)\} & =\lim _{x \rightarrow a}\{f(x)+(-1) \cdot g(x)\} \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a}\{(-1) \cdot g(x)\}(\because \text { Sum Law }) \\
& =\lim _{x \rightarrow a} f(x)+(-1) \cdot \lim _{x \rightarrow a} g(x)(\because \text { Constant Multiple Law }) \\
& =L-M
\end{aligned}
$$

Github:
https://min7014.github.io/math20240103001.html
Click or paste URL into the URL search bar, and you can see a picture moving.

