{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "_k5tMB9V9yTc" }, "source": [ "# [복원추출하여 만든 표본의 표본평균의 표본분포 예제(Sege Math 이용)(Example of the Sampling Distribution of the Sample Mean of a Random Sample with Replacement )](https://min7014.github.io/math20230327001.html)\n" ] }, { "cell_type": "markdown", "source": [ "((Example of the Sampling Distribution of the Sample Mean of a Random Sample with Replacement))\n", "\n", "심볼릭 계산을 이용해서인지 근사값으로 계산되지 않아 정확히 값이 딱 떨어진다.\n" ], "metadata": { "id": "hvLEyFDYdE7d" } }, { "cell_type": "markdown", "source": [ "\n", "\n", "```\n", "number_of_sample:=1\n", "size_of_product_of_population:= 5\n", "size_of_sample_space_of_product_of_population:= 5\n", "size_of_range_of_sample_mean_as_duplicates:=5\n", "range_of_sample_mean:=[1, 3, 5, 7, 9]\n", "size_of_range_of_sample_mean:=5\n", "distribution_of_sample_mean:=[[1, 1/5], [3, 1/5], [5, 1/5], [7, 1/5],[9, 1/5]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=8\n", "[-1, 1, 3, 5, 7, 9, 11]\n", "[0, 1/5, 1/5, 1/5, 1/5, 1/5, 0]\n", "```\n", "\n" ], "metadata": { "id": "163GiNEsgJFg" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "a1G_EJ1tgOgD" } }, { "cell_type": "markdown", "source": [ "\n", "\n", "```\n", "number_of_sample:=2\n", "size_of_product_of_population:= 25\n", "size_of_sample_space_of_product_of_population:= 25\n", "size_of_range_of_sample_mean_as_duplicates:=25\n", "range_of_sample_mean:=[1, 2, 3, 4, 5, 6, 7, 8, 9]\n", "size_of_range_of_sample_mean:=9\n", "distribution_of_sample_mean:=[[1, 1/25], [2, 2/25], [3, 3/25], [4,4/25], [5, 1/5], [6, 4/25], [7, 3/25], [8, 2/25], [9, 1/25]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=4\n", "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n", "[0, 1/25, 2/25, 3/25, 4/25, 1/5, 4/25, 3/25, 2/25, 1/25, 0]\n", "\n", "\n", "```\n", "\n" ], "metadata": { "id": "heSw-D2SgVAw" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "3Wq9UemNgfQ8" } }, { "cell_type": "markdown", "source": [ "\n", "\n", "```\n", "number_of_sample:=3\n", "size_of_product_of_population:= 125\n", "size_of_sample_space_of_product_of_population:= 125\n", "size_of_range_of_sample_mean_as_duplicates:=125\n", "range_of_sample_mean:=[1, 5/3, 7/3, 3, 11/3, 13/3, 5, 17/3, 19/3, 7,23/3, 25/3, 9]\n", "size_of_range_of_sample_mean:=13\n", "distribution_of_sample_mean:=[[1, 1/125], [5/3, 3/125], [7/3, 6/125],[3, 2/25], [11/3, 3/25], [13/3, 18/125], [5, 19/125], [17/3, 18/125],[19/3, 3/25], [7, 2/25], [23/3, 6/125], [25/3, 3/125], [9, 1/125]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=8/3\n", "[1/3, 1, 5/3, 7/3, 3, 11/3, 13/3, 5, 17/3, 19/3, 7, 23/3, 25/3, 9, 29/3]\n", "[0, 1/125, 3/125, 6/125, 2/25, 3/25, 18/125, 19/125, 18/125, 3/25, 2/25,6/125, 3/125, 1/125, 0]\n", "```\n", "\n" ], "metadata": { "id": "e46OYUNfgiXT" } }, { "cell_type": "markdown", "source": [ "\n", "\n", "```\n", "number_of_sample:=4\n", "size_of_product_of_population:= 625\n", "size_of_sample_space_of_product_of_population:= 625\n", "size_of_range_of_sample_mean_as_duplicates:=625\n", "range_of_sample_mean:=[1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5, 11/2, 6, 13/2,7, 15/2, 8, 17/2, 9]\n", "size_of_range_of_sample_mean:=17\n", "distribution_of_sample_mean:=[[1, 1/625], [3/2, 4/625], [2, 2/125],[5/2, 4/125], [3, 7/125], [7/2, 52/625], [4, 68/625], [9/2, 16/125], [5,17/125], [11/2, 16/125], [6, 68/625], [13/2, 52/625], [7, 7/125], [15/2,4/125], [8, 2/125], [17/2, 4/625], [9, 1/625]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=2\n", "[1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5, 11/2, 6, 13/2, 7, 15/2, 8,17/2, 9, 19/2]\n", "[0, 1/625, 4/625, 2/125, 4/125, 7/125, 52/625, 68/625, 16/125, 17/125,16/125, 68/625, 52/625, 7/125, 4/125, 2/125, 4/625, 1/625, 0]\n", "```\n", "\n" ], "metadata": { "id": "B-6Tk4rfgpfo" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "pDWugP-agx1-" } }, { "cell_type": "markdown", "source": [ "\n", "\n", "```\n", "number_of_sample:=5\n", "size_of_product_of_population:= 3125\n", "size_of_sample_space_of_product_of_population:= 3125\n", "size_of_range_of_sample_mean_as_duplicates:=3125\n", "range_of_sample_mean:=[1, 7/5, 9/5, 11/5, 13/5, 3, 17/5, 19/5, 21/5,23/5, 5, 27/5, 29/5, 31/5, 33/5, 7, 37/5, 39/5, 41/5, 43/5, 9]\n", "size_of_range_of_sample_mean:=21\n", "distribution_of_sample_mean:=[[1, 1/3125], [7/5, 1/625], [9/5, 3/625],[11/5, 7/625], [13/5, 14/625], [3, 121/3125], [17/5, 37/625], [19/5,51/625], [21/5, 64/625], [23/5, 73/625], [5, 381/3125], [27/5, 73/625],[29/5, 64/625], [31/5, 51/625], [33/5, 37/625], [7, 121/3125], [37/5,14/625], [39/5, 7/625], [41/5, 3/625], [43/5, 1/625], [9, 1/3125]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=8/5\n", "[3/5, 1, 7/5, 9/5, 11/5, 13/5, 3, 17/5, 19/5, 21/5, 23/5, 5, 27/5, 29/5,31/5, 33/5, 7, 37/5, 39/5, 41/5, 43/5, 9, 47/5]\n", "[0, 1/3125, 1/625, 3/625, 7/625, 14/625, 121/3125, 37/625, 51/625,64/625, 73/625, 381/3125, 73/625, 64/625, 51/625, 37/625, 121/3125,14/625, 7/625, 3/625, 1/625, 1/3125, 0]\n", "```\n", "\n" ], "metadata": { "id": "7Se3q4JTg0Nk" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "cf-kevJdg5QE" } }, { "cell_type": "markdown", "source": [ "\n", "\n", "```\n", "number_of_sample:=6\n", "size_of_product_of_population:= 15625\n", "size_of_sample_space_of_product_of_population:= 15625\n", "size_of_range_of_sample_mean_as_duplicates:=15625\n", "range_of_sample_mean:=[1, 4/3, 5/3, 2, 7/3, 8/3, 3, 10/3, 11/3, 4, 13/3,14/3, 5, 16/3, 17/3, 6, 19/3, 20/3, 7, 22/3, 23/3, 8, 25/3, 26/3, 9]\n", "size_of_range_of_sample_mean:=25\n", "distribution_of_sample_mean:=[[1, 1/15625], [4/3, 6/15625], [5/3,21/15625], [2, 56/15625], [7/3, 126/15625], [8/3, 246/15625], [3,426/15625], [10/3, 666/15625], [11/3, 951/15625], [4, 1246/15625],[13/3, 1506/15625], [14/3, 1686/15625], [5, 1751/15625], [16/3,\n", "1686/15625], [17/3, 1506/15625], [6, 1246/15625], [19/3, 951/15625],[20/3, 666/15625], [7, 426/15625], [22/3, 246/15625], [23/3, 126/15625],[8, 56/15625], [25/3, 21/15625], [26/3, 6/15625], [9, 1/15625]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=4/3\n", "[2/3, 1, 4/3, 5/3, 2, 7/3, 8/3, 3, 10/3, 11/3, 4, 13/3, 14/3, 5, 16/3,17/3, 6, 19/3, 20/3, 7, 22/3, 23/3, 8, 25/3, 26/3, 9, 28/3]\n", "[0, 1/15625, 6/15625, 21/15625, 56/15625, 126/15625, 246/15625,426/15625, 666/15625, 951/15625, 1246/15625, 1506/15625, 1686/15625,1751/15625, 1686/15625, 1506/15625, 1246/15625, 951/15625, 666/15625,426/15625, 246/15625, 126/15625, 56/15625, 21/15625, 6/15625, 1/15625,0]\n", "```\n", "\n" ], "metadata": { "id": "gAG9R8k-g9Hk" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "IjU4aILWhBdf" } }, { "cell_type": "markdown", "source": [ "\n", "\n", "```\n", "number_of_sample:=7\n", "size_of_product_of_population:= 78125\n", "size_of_sample_space_of_product_of_population:= 78125\n", "size_of_range_of_sample_mean_as_duplicates:=78125\n", "range_of_sample_mean:=[1, 9/7, 11/7, 13/7, 15/7, 17/7, 19/7, 3, 23/7,25/7, 27/7, 29/7, 31/7, 33/7, 5, 37/7, 39/7, 41/7, 43/7, 45/7, 47/7, 7,51/7, 53/7, 55/7, 57/7, 59/7, 61/7, 9]\n", "size_of_range_of_sample_mean:=29\n", "distribution_of_sample_mean:=[[1, 1/78125], [9/7, 7/78125], [11/7,28/78125], [13/7, 84/78125], [15/7, 42/15625], [17/7, 91/15625], [19/7,7/625], [3, 304/15625], [23/7, 483/15625], [25/7, 707/15625], [27/7,959/15625], [29/7, 1211/15625], [31/7, 1428/15625], [33/7, 63/625], [5,1627/15625], [37/7, 63/625], [39/7, 1428/15625], [41/7, 1211/15625],[43/7, 959/15625], [45/7, 707/15625], [47/7, 483/15625], [7, 304/15625],[51/7, 7/625], [53/7, 91/15625], [55/7, 42/15625], [57/7, 84/78125],[59/7, 28/78125], [61/7, 7/78125], [9, 1/78125]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=8/7\n", "[5/7, 1, 9/7, 11/7, 13/7, 15/7, 17/7, 19/7, 3, 23/7, 25/7, 27/7, 29/7,31/7, 33/7, 5, 37/7, 39/7, 41/7, 43/7, 45/7, 47/7, 7, 51/7, 53/7, 55/7,57/7, 59/7, 61/7, 9, 65/7]\n", "[0, 1/78125, 7/78125, 28/78125, 84/78125, 42/15625, 91/15625, 7/625,304/15625, 483/15625, 707/15625, 959/15625, 1211/15625, 1428/15625,63/625, 1627/15625, 63/625, 1428/15625, 1211/15625, 959/15625,707/15625, 483/15625, 304/15625, 7/625, 91/15625, 42/15625, 84/78125,28/78125, 7/78125, 1/78125, 0]\n", "```\n", "\n" ], "metadata": { "id": "yQkuNsWMhD-G" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "0pRh6SaBhKcp" } }, { "cell_type": "markdown", "source": [ "\n", "\n", "```\n", "number_of_sample:=8\n", "size_of_product_of_population:= 390625\n", "size_of_sample_space_of_product_of_population:= 390625\n", "size_of_range_of_sample_mean_as_duplicates:=390625\n", "range_of_sample_mean:=[1, 5/4, 3/2, 7/4, 2, 9/4, 5/2, 11/4, 3, 13/4,7/2, 15/4, 4, 17/4, 9/2, 19/4, 5, 21/4, 11/2, 23/4, 6, 25/4, 13/2, 27/4,7, 29/4, 15/2, 31/4, 8, 33/4, 17/2, 35/4, 9]\n", "size_of_range_of_sample_mean:=33\n", "distribution_of_sample_mean:=[[1, 1/390625], [5/4, 8/390625], [3/2,36/390625], [7/4, 24/78125], [2, 66/78125], [9/4, 784/390625], [5/2,1652/390625], [11/4, 3144/390625], [3, 219/15625], [13/4, 352/15625],[7/2, 2628/78125], [15/4, 3664/78125], [4, 4788/78125], [17/4,1176/15625], [9/2, 272/3125], [19/4, 7416/78125], [5, 7633/78125],[21/4, 7416/78125], [11/2, 272/3125], [23/4, 1176/15625], [6,4788/78125], [25/4, 3664/78125], [13/2, 2628/78125], [27/4, 352/15625],[7, 219/15625], [29/4, 3144/390625], [15/2, 1652/390625], [31/4,784/390625], [8, 66/78125], [33/4, 24/78125], [17/2, 36/390625], [35/4,8/390625], [9, 1/390625]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=1\n", "[3/4, 1, 5/4, 3/2, 7/4, 2, 9/4, 5/2, 11/4, 3, 13/4, 7/2, 15/4, 4, 17/4,9/2, 19/4, 5, 21/4, 11/2, 23/4, 6, 25/4, 13/2, 27/4, 7, 29/4, 15/2,31/4, 8, 33/4, 17/2, 35/4, 9, 37/4]\n", "[0, 1/390625, 8/390625, 36/390625, 24/78125, 66/78125, 784/390625,1652/390625, 3144/390625, 219/15625, 352/15625, 2628/78125, 3664/78125,4788/78125, 1176/15625, 272/3125, 7416/78125, 7633/78125, 7416/78125,272/3125, 1176/15625, 4788/78125, 3664/78125, 2628/78125, 352/15625,219/15625, 3144/390625, 1652/390625, 784/390625, 66/78125, 24/78125,36/390625, 8/390625, 1/390625, 0]\n", "```\n", "\n" ], "metadata": { "id": "rD3caHsVhN4E" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "shiiMxnqhRY-" } }, { "cell_type": "markdown", "source": [ "\n", "\n", "```\n", "number_of_sample:=9\n", "size_of_product_of_population:= 1953125\n", "size_of_sample_space_of_product_of_population:= 1953125\n", "size_of_range_of_sample_mean_as_duplicates:=1953125\n", "range_of_sample_mean:=[1, 11/9, 13/9, 5/3, 17/9, 19/9, 7/3, 23/9, 25/9,3, 29/9, 31/9, 11/3, 35/9, 37/9, 13/3, 41/9, 43/9, 5, 47/9, 49/9, 17/3,53/9, 55/9, 19/3, 59/9, 61/9, 7, 65/9, 67/9, 23/3, 71/9, 73/9, 25/3,77/9, 79/9, 9]\n", "size_of_range_of_sample_mean:=37\n", "distribution_of_sample_mean:=[[1, 1/1953125], [11/9, 9/1953125], [13/9,\n", "9/390625], [5/3, 33/390625], [17/9, 99/390625], [19/9, 1278/1953125],[7/3, 2922/1953125], [23/9, 1206/390625], [25/9, 2277/390625], [3,3971/390625], [29/9, 32211/1953125], [31/9, 48879/1953125], [11/3,2787/78125], [35/9, 3744/78125], [37/9, 4752/78125], [13/3,28548/390625], [41/9, 32517/390625], [43/9, 7029/78125], [5,7213/78125], [47/9, 7029/78125], [49/9, 32517/390625], [17/3,28548/390625], [53/9, 4752/78125], [55/9, 3744/78125], [19/3,2787/78125], [59/9, 48879/1953125], [61/9, 32211/1953125], [7,\n", "3971/390625], [65/9, 2277/390625], [67/9, 1206/390625], [23/3,2922/1953125], [71/9, 1278/1953125], [73/9, 99/390625], [25/3,33/390625], [77/9, 9/390625], [79/9, 9/1953125], [9, 1/1953125]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=8/9\n", "[7/9, 1, 11/9, 13/9, 5/3, 17/9, 19/9, 7/3, 23/9, 25/9, 3, 29/9, 31/9,11/3, 35/9, 37/9, 13/3, 41/9, 43/9, 5, 47/9, 49/9, 17/3, 53/9, 55/9,19/3, 59/9, 61/9, 7, 65/9, 67/9, 23/3, 71/9, 73/9, 25/3, 77/9, 79/9, 9,83/9]\n", "[0, 1/1953125, 9/1953125, 9/390625, 33/390625, 99/390625, 1278/1953125,2922/1953125, 1206/390625, 2277/390625, 3971/390625, 32211/1953125,48879/1953125, 2787/78125, 3744/78125, 4752/78125, 28548/390625,32517/390625, 7029/78125, 7213/78125, 7029/78125, 32517/390625,28548/390625, 4752/78125, 3744/78125, 2787/78125, 48879/1953125,32211/1953125, 3971/390625, 2277/390625, 1206/390625, 2922/1953125,1278/1953125, 99/390625, 33/390625, 9/390625, 9/1953125, 1/1953125, 0]\n", "```\n", "\n" ], "metadata": { "id": "_0Er1LPjhU8k" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "1Gk9-UjdhW0k" } }, { "cell_type": "markdown", "source": [ "\n", "\n", "```\n", "number_of_sample:=10\n", "size_of_product_of_population:= 9765625\n", "size_of_sample_space_of_product_of_population:= 9765625\n", "size_of_range_of_sample_mean_as_duplicates:=9765625\n", "range_of_sample_mean:=[1, 6/5, 7/5, 8/5, 9/5, 2, 11/5, 12/5, 13/5, 14/5, 3, 16/5, 17/5, 18/5, 19/5, 4, 21/5, 22/5, 23/5, 24/5, 5, 26/5, 27/5, 28/5, 29/5, 6, 31/5, 32/5, 33/5, 34/5, 7, 36/5, 37/5, 38/5, 39/5, 8, 41/5, 42/5, 43/5, 44/5, 9]\n", "size_of_range_of_sample_mean:=41\n", "distribution_of_sample_mean:=[[1, 1/9765625], [6/5, 2/1953125], [7/5, 11/1953125], [8/5, 44/1953125], [9/5, 143/1953125], [2, 1992/9765625], [11/5, 981/1953125], [12/5, 2178/1953125], [13/5, 4422/1953125], [14/5, 8294/1953125], [3, 72403/9765625], [16/5, 23672/1953125 , [17/5, 36401/1953125], [18/5, 52844/1953125], [19/5, 72633/1953125], [4, 473694/9765625], [21/5, 23496/390625], [22/5, 27738/390625], [23/5, 31207/390625], [24/5, 33484/390625], [5, 171389/1953125], [26/5, 33484/390625], [27/5, 31207/390625], [28/5, 27738/390625], [29/5, 23496/390625], [6, 473694/9765625], [31/5, 72633/1953125], [32/5, 52844/1953125], [33/5, 36401/1953125], [34/5, 23672/1953125], [7, 72403/9765625], [36/5, 8294/1953125], [37/5, 4422/1953125], [38/5, 2178/1953125], [39/5, 981/1953125], [8, 1992/9765625], [41/5, 143/1953125], [42/5, 44/1953125], [43/5, 11/1953125], [44/5, 2/1953125], [9, 1/9765625]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=4/5\n", "[4/5, 1, 6/5, 7/5, 8/5, 9/5, 2, 11/5, 12/5, 13/5, 14/5, 3, 16/5, 17/5, 18/5, 19/5, 4, 21/5, 22/5, 23/5, 24/5, 5, 26/5, 27/5, 28/5, 29/5, 6, 31/5, 32/5, 33/5, 34/5, 7, 36/5, 37/5, 38/5, 39/5, 8, 41/5, 42/5, 43/5, 44/5, 9, 46/5]\n", "[0, 1/9765625, 2/1953125, 11/1953125, 44/1953125, 143/1953125, 1992/9765625, 981/1953125, 2178/1953125, 4422/1953125, 8294/1953125, 72403/9765625, 23672/1953125, 36401/1953125, 52844/1953125, 72633/1953125, 473694/9765625, 23496/390625, 27738/390625, 31207/390625, 33484/390625, 171389/1953125, 33484/390625, 31207/390625, 27738/390625, 23496/390625, 473694/9765625, 72633/1953125, 52844/1953125, 36401/1953125, 23672/1953125, 72403/9765625, 8294/1953125, 4422/1953125, 2178/1953125, 981/1953125, 1992/9765625, 143/1953125, 44/1953125, 11/1953125, 2/1953125, 1/9765625, 0]\n", "\n", "```\n", "\n" ], "metadata": { "id": "PaKgbx3_hZa9" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "Cxq9GevahdMq" } }, { "cell_type": "markdown", "source": [ "자료는 나름 잘 만들었다고 생각했는데, 오히려 알고 있던 내용이 혼란스럽다.\n", "\n", "과연 모집단이 뭐지? 조사는 뭐지? 확률에서 말하는 이상적인 상황에서\n", "\n", "표본공간에서의 사건과 혼돈하는 듯 하고?\n", "\n", "이상적인 상황에서 조사와 시행이 같아 보이기는 한데... 오히려 모집단이 뭔지\n", "\n", "모르는 상황이 되어버렸다.\n", "\n", "나름 합리화로 답을 만들었지만, 자신이 없다.\n", "\n", "아래 예는 \"모평균은 표본평균의 평균과 같다.\"를 설명하는\n", "\n", "잘 알려진 예인데 이것에서 모든 통계용어를 써가며 분석해보니\n", "\n", "더욱 모르겠다, 나만 이런 생각을 하나?" ], "metadata": { "id": "LE4cfceYhg-y" } }, { "cell_type": "markdown", "source": [ "아래는 Sage Math의 Text 파일이다. 위의 Nims 서버와 같은 내용인데, 혹시나 Nims 서버가 없어지는 경우를 대비하여 Text 형식을 아래에 붙여 놓았다.\n", "" ], "metadata": { "id": "0j9PUNichh7f" } }, { "cell_type": "markdown", "source": [ "\n", "\n", "```\n", "$\\text{지금은 작업중 입니다.}$\n", "sage: population=[(1,1),(3,1),(5,1),(7,1),(9,1)]\n", "sage: #population=[(1,1),(2,1),(2,1),(3,1),(3,1),(3,1)]\n", "sage: print(\"population := %s \" % population)\n", "sage: size_of_population=len(population)\n", "sage: print(\"size_of_population:= %s\" % size_of_population)\n", "population := [(1, 1), (3, 1), (5, 1), (7, 1), (9, 1)]\n", "size_of_population:= 5\n", "$\\begin{array}{l}\n", "\\text{모집단이 수가 아니라 대상이란 의미에서 순서쌍의 $y$좌표가 $1$인 순서쌍으로 표현했다.} \\\\\n", "\\text{여기서는 모집단의 원소를 카드나 공으로 생각하자. } \\\\\n", "\\text{그러면 같은 순서쌍이 여러개 있는 것을 } \\\\\n", "\\text{같은 순서쌍의 $x$좌표의 수가 써 있는 여러개의 카드나 공으로 생각할 수 있다. } \\\\\n", "\\text{모집단의 원소를 선택하는 것을 시행으로 보고}\\\\\n", "\\text{순서쌍의 $x$좌표의 원소의 글자를 얻은 것을 시행의 결과로 보자.}\n", "\\end{array}$\n", "sage: sample_space_of_population=[]\n", "sage: for i in range(size_of_population):\n", "... sample_space_of_population.insert(i,(population[i][0],population[i][1]+1))\n", "...\n", "sage: sample_space_of_population=sorted(list(set(sample_space_of_population)))\n", "sage: print(\"sample_space_of_population:= %s\" %sample_space_of_population)\n", "sage: size_of_sample_space_of_population=len(sample_space_of_population)\n", "sage: print(\"size_of_sample_space_of_population:= %s\" % size_of_sample_space_of_population)\n", "sample_space_of_population:= [(1, 2), (3, 2), (5, 2), (7, 2), (9, 2)]\n", "size_of_sample_space_of_population:= 5\n", "$\\begin{array}{l}\n", "\\text{모집단의 표본공간이 수가 아니라 시행의 결과란 의미에서} \\\\\n", "\\text{순서쌍의 $x$좌표는 시행해서 얻어지는 모집단의 원소인 순서쌍의 $x$좌표이고} \\\\\n", "\\text{순서쌍의 $y$좌표가 $2$인 순서쌍으로 표현했다.} \\\\\n", "\\text{모집단의 원소를 선택하는 가능성이 같다고 보자.} \\\\\n", "\\end{array} $\n", "sage: probability_of_sample_space_of_population=[]\n", "sage: j=-1\n", "sage: for i in sample_space_of_population:\n", "... j=j+1\n", "... probability_of_sample_space_of_population.insert(j,1/1*population.count((i[0],i[1]-1))/size_of_population)\n", "...\n", "sage: print(\"probability_of_sample_space_of_population=%s\" % probability_of_sample_space_of_population)\n", "sage: print(\"sum of probability_of_sample_space_of_population=%s\" % sum(probability_of_sample_space_of_population))\n", "probability_of_sample_space_of_population=[1/5, 1/5, 1/5, 1/5, 1/5]\n", "sum of probability_of_sample_space_of_population=1\n", "$\\begin{array}{l}\n", "\\text{모집단의표본공간의 원소를 그 원소인 순서쌍의 $x$좌표로의 대응을 확률변수 $\\mathrm{X}$ 라 하자. } \\end{array}$\n", "sage: random_variable_X=[]\n", "sage: j=-1\n", "sage: for i in sample_space_of_population:\n", "... j=j+1\n", "... random_variable_X.insert(j,[i,i[0]])\n", "... #random_variable_X.insert(j,[i,1+floor(log(j+1)/log(2))]) \n", "... #일단 위의 경우처럼 특별한 경우에 대하여 진행한 후 다시 가정에 맞게 가기로 한다.\n", "...\n", "sage: print(\"random_variable_X:= %s\" % random_variable_X)\n", "random_variable_X:= [[(1, 2), 1], [(3, 2), 3], [(5, 2), 5], [(7, 2), 7], [(9, 2), 9]]\n", "sage: range_of_random_variable_X_as_duplicates=[]\n", "sage: j=-1\n", "sage: for i in random_variable_X:\n", "... j=j+1\n", "... range_of_random_variable_X_as_duplicates.insert(j,i[1])\n", "... \n", "...\n", "sage: print(\"range_of_random_variable_X_as_duplicates:=%s\" % range_of_random_variable_X_as_duplicates)\n", "range_of_random_variable_X_as_duplicates:=[1, 3, 5, 7, 9]\n", "sage: size_of_range_of_random_variable_X_as_duplicates=len(range_of_random_variable_X_as_duplicates)\n", "sage: print(\"size_of_range_of_random_variable_X_as_duplicates:=%s\" % size_of_range_of_random_variable_X_as_duplicates)\n", "size_of_range_of_random_variable_X_as_duplicates:=5\n", "sage: probability_of_range_of_random_variable_X_as_duplicates=copy(probability_of_sample_space_of_population)\n", "sage: %latex\n", "sage: probability of range of random variable $\\mathrm{X}$ as duplicates $\\displaystyle=\\sage{latex(probability_of_range_of_random_variable_X_as_duplicates)}$\n", "sage: print(\"sum of probability_of_range_of_random_variable_X_as_duplicates=%s\" % sum(probability_of_range_of_random_variable_X_as_duplicates))\n", "sum of probability_of_range_of_random_variable_X_as_duplicates=1\n", "sage: range_of_random_variable_X=copy(sorted(list(set(range_of_random_variable_X_as_duplicates))))\n", "sage: print(\"range_of_random_variable_X:=%s\" % range_of_random_variable_X)\n", "sage: size_of_range_of_random_variable_X=len(range_of_random_variable_X)\n", "sage: print(\"size_of_range_of_random_variable_X:=%s\" % size_of_range_of_random_variable_X)\n", "range_of_random_variable_X:=[1, 3, 5, 7, 9]\n", "size_of_range_of_random_variable_X:=5\n", "sage: probability_of_range_of_random_variable_X=[]\n", "sage: for i in range(size_of_range_of_random_variable_X):\n", "... sumtemp=0\n", "... for j in range(size_of_range_of_random_variable_X_as_duplicates):\n", "... if range_of_random_variable_X[i]==range_of_random_variable_X_as_duplicates[j]:\n", "... sumtemp=sumtemp+probability_of_range_of_random_variable_X_as_duplicates[j] \n", "... probability_of_range_of_random_variable_X.insert(i,sumtemp)\n", "sage: %latex\n", "sage: \\ \\\\\n", "sage: probability of range of random variable $\\mathrm{X}$ $\\displaystyle=\\sage{latex(probability_of_range_of_random_variable_X)}$ \\\\\n", "sage: \\ \\\\\n", "sage: sum of probability of range of random variable $\\mathrm{X}$ $\\displaystyle=\\sage{latex(sum(probability_of_range_of_random_variable_X))}$\n", "sage: distribution_of_population=[]\n", "sage: for i in range(size_of_range_of_random_variable_X):\n", "... distribution_of_population.insert(i,[range_of_random_variable_X[i],probability_of_range_of_random_variable_X[i]])\n", "sage: %latex\n", "sage: distribution of population $\\displaystyle=\\sage{latex(distribution_of_population)}$\n", "sage: population_mean=0\n", "sage: for i in range(size_of_range_of_random_variable_X):\n", "... population_mean=population_mean+range_of_random_variable_X[i]*probability_of_range_of_random_variable_X[i]\n", "...\n", "sage: print(population_mean)\n", "5\n", "sage: population_variance=0\n", "sage: for i in range(size_of_range_of_random_variable_X):\n", "... population_variance=population_variance+probability_of_range_of_random_variable_X[i]*range_of_random_variable_X[i]^2\n", "...\n", "sage: population_variance=population_variance-population_mean^2\n", "... \n", "...\n", "sage: print(\"population_variance:=%s\" % population_variance)\n", "population_variance:=8\n", "sage: population_standard_deviation=sqrt(population_variance)\n", "sage: %latex\n", "sage: population standard deviation $\\displaystyle=\\sage{latex(population_standard_deviation)}$\n", "$\\text{모집단의 확률분포는 확률변수}\\mathrm{X}\\text{의 확률분포이다.}$\n", "sage: number_of_sample=2\n", "sage: %latex\n", "sage: $\\displaystyle\\overline{\\mathrm{X}}=\\frac{1}{\\sage{number_of_sample}}\\sum_{i=1}^\\sage{number_of_sample} \\mathrm{X}_i$\n", "$\\begin{array}{l}\n", "\\text{복원추출을 할 경우 표본개수의 제한이 없지만,} \\\\\n", "\\text{비복원추출일 경우 표본개수의 제한은 모집단 크기가 된다.} \\\\\n", "\\text{복원추출로 표본을 추출했다고 가정한다.}\n", "\\end{array}$\n", "sage: product_of_population=[]\n", "sage: for i in range(size_of_population^number_of_sample):\n", "... temp=[]\n", "... for j in range(number_of_sample):\n", "... temp.insert(j,population[mod(floor(i/size_of_population^j),size_of_population)])\n", "... product_of_population.insert(i,temp)\n", "...\n", "sage: size_of_product_of_population=len(product_of_population)\n", "sage: if size_of_product_of_population*(number_of_sample+1)<600:\n", "... print(\"product_of_population := %s \" % product_of_population)\n", "... else:\n", "... print(\"자료가 너무 많아 product_of_population을 표시하지 않음\")\n", "... \n", "...\n", "sage: print(\"size_of_product_of_population:= %s\" % size_of_product_of_population)\n", "product_of_population := [[(1, 1), (1, 1)], [(3, 1), (1, 1)], [(5, 1), (1, 1)], [(7, 1), (1, 1)], [(9, 1), (1, 1)], [(1, 1), (3, 1)], [(3, 1), (3, 1)], [(5, 1), (3, 1)], [(7, 1), (3, 1)], [(9, 1), (3, 1)], [(1, 1), (5, 1)], [(3, 1), (5, 1)], [(5, 1), (5, 1)], [(7, 1), (5, 1)], [(9, 1), (5, 1)], [(1, 1), (7, 1)], [(3, 1), (7, 1)], [(5, 1), (7, 1)], [(7, 1), (7, 1)], [(9, 1), (7, 1)], [(1, 1), (9, 1)], [(3, 1), (9, 1)], [(5, 1), (9, 1)], [(7, 1), (9, 1)], [(9, 1), (9, 1)]]\n", "size_of_product_of_population:= 25\n", "sage: sample_space_of_product_of_population=[]\n", "sage: for i in range(size_of_product_of_population):\n", "... temp=[]\n", "... for j in range(number_of_sample):\n", "... temp.insert(j,(product_of_population[i][j][0],product_of_population[i][j][1]+1))\n", "... sample_space_of_product_of_population.insert(i,temp)\n", "...\n", "sage: sample_space_of_product_of_population=sorted(sample_space_of_product_of_population)\n", "sage: temp=[]\n", "sage: temp.insert(0,sample_space_of_product_of_population[0])\n", "sage: j=0\n", "sage: for i in range(1,size_of_product_of_population):\n", "... if not(sample_space_of_product_of_population[i-1]==sample_space_of_product_of_population[i]):\n", "... j=j+1\n", "... temp.insert(j,sample_space_of_product_of_population[i])\n", "... \n", "...\n", "sage: sample_space_of_product_of_population=temp\n", "sage: size_of_sample_space_of_product_of_population=len(sample_space_of_product_of_population)\n", "... \n", "...\n", "sage: if size_of_product_of_population*(number_of_sample+1)<600:\n", "... print(\"sample_space_of_product_of_population:= %s\" %sample_space_of_product_of_population)\n", "... else:\n", "... print(\"자료가 너무 많아 sample_space_of_product_of_population을 표시하지 않음\")\n", "...\n", "sage: print(\"size_of_sample_space_of_product_of_population:= %s\" % size_of_sample_space_of_product_of_population)\n", "sample_space_of_product_of_population:= [[(1, 2), (1, 2)], [(1, 2), (3, 2)], [(1, 2), (5, 2)], [(1, 2), (7, 2)], [(1, 2), (9, 2)], [(3, 2), (1, 2)], [(3, 2), (3, 2)], [(3, 2), (5, 2)], [(3, 2), (7, 2)], [(3, 2), (9, 2)], [(5, 2), (1, 2)], [(5, 2), (3, 2)], [(5, 2), (5, 2)], [(5, 2), (7, 2)], [(5, 2), (9, 2)], [(7, 2), (1, 2)], [(7, 2), (3, 2)], [(7, 2), (5, 2)], [(7, 2), (7, 2)], [(7, 2), (9, 2)], [(9, 2), (1, 2)], [(9, 2), (3, 2)], [(9, 2), (5, 2)], [(9, 2), (7, 2)], [(9, 2), (9, 2)]]\n", "size_of_sample_space_of_product_of_population:= 25\n", "sage: probability_of_sample_space_of_product_of_population=[]\n", "sage: j=-1\n", "sage: for i in sample_space_of_product_of_population:\n", "... j=j+1\n", "... temp=[]\n", "... for k in range(number_of_sample):\n", "... temp.insert(k,(i[k][0],i[k][1]-1))\n", "... probability_of_sample_space_of_product_of_population.insert(j,1/1*product_of_population.count(temp)/size_of_product_of_population)\n", "...\n", "sage: if size_of_product_of_population<600:\n", "... print(\"probability_of_sample_space_of_product_of_population:=%s\" % probability_of_sample_space_of_product_of_population)\n", "... else:\n", "... print(\"자료가 너무 많아 probability_of_sample_space_of_product_of_population을 표시하지 않음\")\n", "...\n", "sage: print(\"sum of probability_of_sample_space_of_product_of_population:=%s\" % sum(probability_of_sample_space_of_product_of_population))\n", "probability_of_sample_space_of_product_of_population:=[1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25]\n", "sum of probability_of_sample_space_of_product_of_population:=1\n", "sage: sample_mean=[]\n", "sage: j=-1\n", "sage: for i in sample_space_of_product_of_population:\n", "... j=j+1\n", "... temp=0\n", "... for k in range(number_of_sample):\n", "... temp=temp+i[k][0]\n", "... sample_mean.insert(j,[i,temp/number_of_sample])\n", "... \n", "...\n", "sage: print(\"sample_mean:= %s\" % sample_mean)\n", "sample_mean:= [[[(1, 2), (1, 2)], 1], [[(1, 2), (3, 2)], 2], [[(1, 2), (5, 2)], 3], [[(1, 2), (7, 2)], 4], [[(1, 2), (9, 2)], 5], [[(3, 2), (1, 2)], 2], [[(3, 2), (3, 2)], 3], [[(3, 2), (5, 2)], 4], [[(3, 2), (7, 2)], 5], [[(3, 2), (9, 2)], 6], [[(5, 2), (1, 2)], 3], [[(5, 2), (3, 2)], 4], [[(5, 2), (5, 2)], 5], [[(5, 2), (7, 2)], 6], [[(5, 2), (9, 2)], 7], [[(7, 2), (1, 2)], 4], [[(7, 2), (3, 2)], 5], [[(7, 2), (5, 2)], 6], [[(7, 2), (7, 2)], 7], [[(7, 2), (9, 2)], 8], [[(9, 2), (1, 2)], 5], [[(9, 2), (3, 2)], 6], [[(9, 2), (5, 2)], 7], [[(9, 2), (7, 2)], 8], [[(9, 2), (9, 2)], 9]]\n", "sage: range_of_sample_mean_as_duplicates=[]\n", "sage: j=-1\n", "sage: for i in sample_mean:\n", "... j=j+1\n", "... range_of_sample_mean_as_duplicates.insert(j,i[1])\n", "...\n", "sage: size_of_range_of_sample_mean_as_duplicates=len(range_of_sample_mean_as_duplicates)\n", "sage: if size_of_range_of_sample_mean_as_duplicates<600:\n", "... print(\"range_of_sample_mean_as_duplicates:=%s\" % range_of_sample_mean_as_duplicates)\n", "... else:\n", "... print(\"자료가 너무 많아 range_of_sample_mean_as_duplicates을 표시하지 않음\")\n", "... \n", "...\n", "sage: print(\"size_of_range_of_sample_mean_as_duplicates:=%s\" % size_of_range_of_sample_mean_as_duplicates)\n", "range_of_sample_mean_as_duplicates:=[1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9]\n", "size_of_range_of_sample_mean_as_duplicates:=25\n", "sage: probability_of_range_of_sample_mean_as_duplicates=copy(probability_of_sample_space_of_product_of_population)\n", "sage: if size_of_range_of_sample_mean_as_duplicates<600:\n", "... print(\"probability_of_range_of_sample_mean_as_duplicates:=%s\" % probability_of_range_of_sample_mean_as_duplicates)\n", "... else:\n", "... print(\"자료가 너무 많아 probability_of_range_of_sample_mean_as_duplicates을 표시하지 않음\")\n", "... \n", "...\n", "sage: print(\"sum of probability_of_range_of_sample_mean_as_duplicates=%s\" % sum(probability_of_range_of_sample_mean_as_duplicates))\n", "probability_of_range_of_sample_mean_as_duplicates:=[1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25, 1/25]\n", "sum of probability_of_range_of_sample_mean_as_duplicates=1\n", "sage: %latex\n", "sage: probability of range of sample mean as duplicates $\\displaystyle=\\sage{latex(probability_of_range_of_sample_mean_as_duplicates)}$\n", "sage: range_of_sample_mean=copy(sorted(list(set(range_of_sample_mean_as_duplicates))))\n", "sage: print(\"range_of_sample_mean:=%s\" % range_of_sample_mean)\n", "sage: size_of_range_of_sample_mean=len(range_of_sample_mean)\n", "sage: print(\"size_of_range_of_sample_mean:=%s\" % size_of_range_of_sample_mean)\n", "range_of_sample_mean:=[1, 2, 3, 4, 5, 6, 7, 8, 9]\n", "size_of_range_of_sample_mean:=9\n", "sage: probability_of_range_of_sample_mean=[]\n", "sage: for i in range(size_of_range_of_sample_mean):\n", "... sumtemp=0\n", "... for j in range(size_of_range_of_sample_mean_as_duplicates):\n", "... if range_of_sample_mean[i]==range_of_sample_mean_as_duplicates[j]:\n", "... sumtemp=sumtemp+probability_of_range_of_sample_mean_as_duplicates[j] \n", "... probability_of_range_of_sample_mean.insert(i,sumtemp)\n", "...\n", "sage: print(probability_of_range_of_sample_mean)\n", "[1/25, 2/25, 3/25, 4/25, 1/5, 4/25, 3/25, 2/25, 1/25]\n", "sage: %latex\n", "sage: \\ \\\\\n", "sage: probability of range of sample mean $\\displaystyle=\\sage{latex(probability_of_range_of_sample_mean)}$ \\\\\n", "sage: \\ \\\\\n", "sage: sum of probability of range of sample mean $\\displaystyle=\\sage{latex(sum(probability_of_range_of_sample_mean))}$\n", "sage: distribution_of_sample_mean=[]\n", "sage: for i in range(size_of_range_of_sample_mean):\n", "... distribution_of_sample_mean.insert(i,[range_of_sample_mean[i],probability_of_range_of_sample_mean[i]])\n", "sage: %latex\n", "sage: distribution of sample mean $\\displaystyle=\\sage{latex(distribution_of_sample_mean)}$\n", "sage: mean_of_sample_mean=0\n", "sage: for i in range(size_of_range_of_sample_mean):\n", "... mean_of_sample_mean=mean_of_sample_mean+range_of_sample_mean[i]*probability_of_range_of_sample_mean[i]\n", "...\n", "sage: print(mean_of_sample_mean)\n", "5\n", "sage: %latex\n", "sage: mean of sample mean $\\displaystyle=\\sage{latex(mean_of_sample_mean)}$\n", "sage: variance_of_sample_mean=0\n", "sage: for i in range(size_of_range_of_sample_mean):\n", "... variance_of_sample_mean=variance_of_sample_mean+range_of_sample_mean[i]^2*probability_of_range_of_sample_mean[i]\n", "...\n", "sage: variance_of_sample_mean=variance_of_sample_mean-mean_of_sample_mean^2\n", "... \n", "...\n", "sage: print(\"variance_of_sample_mean:=%s\" % variance_of_sample_mean)\n", "variance_of_sample_mean:=4\n", "sage: %latex\n", "sage: variance of sample mean $\\displaystyle=\\sage{latex(variance_of_sample_mean)}$\n", "sage: histogram_data = []\n", "sage: histogram_data.insert(0,range_of_sample_mean[0]-(range_of_sample_mean[1]-range_of_sample_mean[0]))\n", "sage: for i in range(size_of_range_of_sample_mean):\n", "... histogram_data.insert(i+1,range_of_sample_mean[i])\n", "...\n", "sage: histogram_data.insert(size_of_range_of_sample_mean+1,range_of_sample_mean[size_of_range_of_sample_mean-1]+(range_of_sample_mean[size_of_range_of_sample_mean-1]-range_of_sample_mean[size_of_range_of_sample_mean-2]))\n", "sage: histogram_weights = []\n", "sage: histogram_weights.insert(0,0)\n", "sage: for i in range(size_of_range_of_sample_mean):\n", "... histogram_weights.insert(i+1,probability_of_range_of_sample_mean[i])\n", "...\n", "sage: histogram_weights.insert(size_of_range_of_sample_mean+1,0)\n", "sage: print(histogram_data)\n", "sage: print(histogram_weights)\n", "sage: histogram(histogram_data,bins=11, weights=histogram_weights)\n", "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n", "[0, 1/25, 2/25, 3/25, 4/25, 1/5, 4/25, 3/25, 2/25, 1/25, 0]\n", "sage: #아래는 위의 내용을 함수로 만들어서 한번에 결과를 보려고 만들었다.\n", "sage: def function_of_population(population):\n", "... print(\"population := %s \" % population)\n", "... \n", "... size_of_population=len(population)\n", "... \n", "... sample_space_of_population=[]\n", "... for i in range(size_of_population):\n", "... sample_space_of_population.insert(i,(population[i][0],population[i][1]+1))\n", "... sample_space_of_population=sorted(list(set(sample_space_of_population)))\n", "... print(\"sample_space_of_population:= %s\" %sample_space_of_population)\n", "... size_of_sample_space_of_population=len(sample_space_of_population)\n", "... print(\"size_of_sample_space_of_population:= %s\" % size_of_sample_space_of_population)\n", "... \n", "... print(\"size_of_population:= %s\" % size_of_population)\n", "... probability_of_sample_space_of_population=[]\n", "... j=-1\n", "... for i in sample_space_of_population:\n", "... j=j+1\n", "... probability_of_sample_space_of_population.insert(j,1/1*population.count((i[0],i[1]-1))/size_of_population)\n", "... print(\"probability_of_sample_space_of_population=%s\" % probability_of_sample_space_of_population)\n", "... random_variable_X=[]\n", "... j=-1\n", "... for i in sample_space_of_population:\n", "... j=j+1\n", "... random_variable_X.insert(j,[i,i[0]])\n", "... #random_variable_X.insert(j,[i,1+floor(log(j+1)/log(2))]) \n", "... #일단 위의 경우처럼 특별한 경우에 대하여 진행한 후 다시 가정에 맞게 가기로 한다.\n", "... print(\"random_variable_X:= %s\" % random_variable_X)\n", "... range_of_random_variable_X_as_duplicates=[]\n", "... j=-1\n", "... for i in random_variable_X:\n", "... j=j+1\n", "... range_of_random_variable_X_as_duplicates.insert(j,i[1])\n", "... \n", "... print(\"range_of_random_variable_X_as_duplicates:=%s\" % range_of_random_variable_X_as_duplicates)\n", "... size_of_range_of_random_variable_X_as_duplicates=len(range_of_random_variable_X_as_duplicates)\n", "... print(\"size_of_range_of_random_variable_X_as_duplicates:=%s\" % size_of_range_of_random_variable_X_as_duplicates)\n", "... probability_of_range_of_random_variable_X_as_duplicates=copy(probability_of_sample_space_of_population)\n", "... range_of_random_variable_X=copy(sorted(list(set(range_of_random_variable_X_as_duplicates))))\n", "... print(\"range_of_random_variable_X:=%s\" % range_of_random_variable_X)\n", "... size_of_range_of_random_variable_X=len(range_of_random_variable_X)\n", "... print(\"size_of_range_of_random_variable_X:=%s\" % size_of_range_of_random_variable_X)\n", "... probability_of_range_of_random_variable_X=[]\n", "... for i in range(size_of_range_of_random_variable_X):\n", "... sumtemp=0\n", "... for j in range(size_of_range_of_random_variable_X_as_duplicates):\n", "... if range_of_random_variable_X[i]==range_of_random_variable_X_as_duplicates[j]:\n", "... sumtemp=sumtemp+probability_of_range_of_random_variable_X_as_duplicates[j] \n", "... probability_of_range_of_random_variable_X.insert(i,sumtemp)\n", "... \n", "... \n", "... distribution_of_population=[]\n", "... for i in range(size_of_range_of_random_variable_X):\n", "... distribution_of_population.insert(i,[range_of_random_variable_X[i],probability_of_range_of_random_variable_X[i]])\n", "... population_mean=0\n", "... for i in range(size_of_range_of_random_variable_X):\n", "... population_mean=population_mean+range_of_random_variable_X[i]*probability_of_range_of_random_variable_X[i]\n", "... print(\"population_mean:=%s\" % population_mean)\n", "... population_variance=0\n", "... for i in range(size_of_range_of_random_variable_X):\n", "... population_variance=population_variance+probability_of_range_of_random_variable_X[i]*range_of_random_variable_X[i]^2\n", "... population_variance=population_variance-population_mean^2\n", "... \n", "... print(\"population_variance:=%s\" % population_variance)\n", "...\n", "sage: def function_of_sample(population,number_of_sample):\n", "... print(\"number_of_sample:=%s\" % number_of_sample)\n", "... size_of_population=len(population) \n", "... sample_space_of_product_of_population=[]\n", "... product_of_population=[]\n", "... for i in range(size_of_population^number_of_sample):\n", "... temp=[]\n", "... for j in range(number_of_sample):\n", "... temp.insert(j,population[mod(floor(i/size_of_population^j),size_of_population)])\n", "... product_of_population.insert(i,temp)\n", "... \n", "... size_of_product_of_population=len(product_of_population)\n", "... \n", "... print(\"size_of_product_of_population:= %s\" % size_of_product_of_population)\n", "... \n", "... for i in range(size_of_product_of_population):\n", "... temp=[]\n", "... for j in range(number_of_sample):\n", "... temp.insert(j,(product_of_population[i][j][0],product_of_population[i][j][1]+1))\n", "... sample_space_of_product_of_population.insert(i,temp)\n", "... sample_space_of_product_of_population=sorted(sample_space_of_product_of_population)\n", "... temp=[]\n", "... temp.insert(0,sample_space_of_product_of_population[0])\n", "... j=0\n", "... for i in range(1,size_of_product_of_population):\n", "... if not(sample_space_of_product_of_population[i-1]==sample_space_of_product_of_population[i]):\n", "... j=j+1\n", "... temp.insert(j,sample_space_of_product_of_population[i])\n", "... \n", "... sample_space_of_product_of_population=temp\n", "... size_of_sample_space_of_product_of_population=len(sample_space_of_product_of_population)\n", "... \n", "... print(\"size_of_sample_space_of_product_of_population:= %s\" % size_of_sample_space_of_product_of_population)\n", "... probability_of_sample_space_of_product_of_population=[]\n", "... j=-1\n", "... for i in sample_space_of_product_of_population:\n", "... j=j+1\n", "... temp=[]\n", "... for k in range(number_of_sample):\n", "... temp.insert(k,(i[k][0],i[k][1]-1))\n", "... probability_of_sample_space_of_product_of_population.insert(j,1/1*product_of_population.count(temp)/size_of_product_of_population)\n", "... \n", "... sample_mean=[]\n", "... j=-1\n", "... for i in sample_space_of_product_of_population:\n", "... j=j+1\n", "... temp=0\n", "... for k in range(number_of_sample):\n", "... temp=temp+i[k][0]\n", "... sample_mean.insert(j,[i,temp/number_of_sample])\n", "... \n", "... range_of_sample_mean_as_duplicates=[]\n", "... j=-1\n", "... for i in sample_mean:\n", "... j=j+1\n", "... range_of_sample_mean_as_duplicates.insert(j,i[1])\n", "... size_of_range_of_sample_mean_as_duplicates=len(range_of_sample_mean_as_duplicates)\n", "... \n", "... print(\"size_of_range_of_sample_mean_as_duplicates:=%s\" % size_of_range_of_sample_mean_as_duplicates)\n", "... probability_of_range_of_sample_mean_as_duplicates=copy(probability_of_sample_space_of_product_of_population)\n", "... range_of_sample_mean=copy(sorted(list(set(range_of_sample_mean_as_duplicates))))\n", "... print(\"range_of_sample_mean:=%s\" % range_of_sample_mean)\n", "... size_of_range_of_sample_mean=len(range_of_sample_mean)\n", "... print(\"size_of_range_of_sample_mean:=%s\" % size_of_range_of_sample_mean)\n", "... probability_of_range_of_sample_mean=[]\n", "... for i in range(size_of_range_of_sample_mean):\n", "... sumtemp=0\n", "... for j in range(size_of_range_of_sample_mean_as_duplicates):\n", "... if range_of_sample_mean[i]==range_of_sample_mean_as_duplicates[j]:\n", "... sumtemp=sumtemp+probability_of_range_of_sample_mean_as_duplicates[j] \n", "... probability_of_range_of_sample_mean.insert(i,sumtemp)\n", "... \n", "... distribution_of_sample_mean=[]\n", "... for i in range(size_of_range_of_sample_mean):\n", "... distribution_of_sample_mean.insert(i,[range_of_sample_mean[i],probability_of_range_of_sample_mean[i]])\n", "... \n", "... print(\"distribution_of_sample_mean:=%s\" % distribution_of_sample_mean)\n", "... \n", "... mean_of_sample_mean=0\n", "... for i in range(size_of_range_of_sample_mean):\n", "... mean_of_sample_mean=mean_of_sample_mean+range_of_sample_mean[i]*probability_of_range_of_sample_mean[i]\n", "... print(\"mean_of_sample_mean:=%s\" % mean_of_sample_mean)\n", "... \n", "... variance_of_sample_mean=0\n", "... for i in range(size_of_range_of_sample_mean):\n", "... variance_of_sample_mean=variance_of_sample_mean+range_of_sample_mean[i]^2*probability_of_range_of_sample_mean[i]\n", "... variance_of_sample_mean=variance_of_sample_mean-mean_of_sample_mean^2\n", "... \n", "... print(\"variance_of_sample_mean:=%s\" % variance_of_sample_mean)\n", "... \n", "... histogram_data = []\n", "... histogram_data.insert(0,range_of_sample_mean[0]-(range_of_sample_mean[1]-range_of_sample_mean[0]))\n", "... for i in range(size_of_range_of_sample_mean):\n", "... histogram_data.insert(i+1,range_of_sample_mean[i])\n", "... histogram_data.insert(size_of_range_of_sample_mean+1,range_of_sample_mean[size_of_range_of_sample_mean-1]+(range_of_sample_mean[size_of_range_of_sample_mean-1]-range_of_sample_mean[size_of_range_of_sample_mean-2]))\n", "... histogram_weights = []\n", "... histogram_weights.insert(0,0)\n", "... for i in range(size_of_range_of_sample_mean):\n", "... histogram_weights.insert(i+1,probability_of_range_of_sample_mean[i])\n", "... histogram_weights.insert(size_of_range_of_sample_mean+1,0)\n", "... print(histogram_data)\n", "... print(histogram_weights)\n", "... show(histogram(histogram_data,bins=size_of_range_of_sample_mean+2, weights=histogram_weights))\n", "sage: population=[(1,1),(3,1),(5,1),(7,1),(9,1)]\n", "sage: function_of_sample(population,1)\n", "number_of_sample:=1\n", "size_of_product_of_population:= 5\n", "size_of_sample_space_of_product_of_population:= 5\n", "size_of_range_of_sample_mean_as_duplicates:=5\n", "range_of_sample_mean:=[1, 3, 5, 7, 9]\n", "size_of_range_of_sample_mean:=5\n", "distribution_of_sample_mean:=[[1, 1/5], [3, 1/5], [5, 1/5], [7, 1/5], [9, 1/5]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=8\n", "[-1, 1, 3, 5, 7, 9, 11]\n", "[0, 1/5, 1/5, 1/5, 1/5, 1/5, 0]\n", "sage: population=[(1,1),(3,1),(5,1),(7,1),(9,1)]\n", "sage: function_of_sample(population,2)\n", "number_of_sample:=2\n", "size_of_product_of_population:= 25\n", "size_of_sample_space_of_product_of_population:= 25\n", "size_of_range_of_sample_mean_as_duplicates:=25\n", "range_of_sample_mean:=[1, 2, 3, 4, 5, 6, 7, 8, 9]\n", "size_of_range_of_sample_mean:=9\n", "distribution_of_sample_mean:=[[1, 1/25], [2, 2/25], [3, 3/25], [4, 4/25], [5, 1/5], [6, 4/25], [7, 3/25], [8, 2/25], [9, 1/25]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=4\n", "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n", "[0, 1/25, 2/25, 3/25, 4/25, 1/5, 4/25, 3/25, 2/25, 1/25, 0]\n", "sage: population=[(1,1),(3,1),(5,1),(7,1),(9,1)]\n", "sage: function_of_sample(population,3)\n", "number_of_sample:=3\n", "size_of_product_of_population:= 125\n", "size_of_sample_space_of_product_of_population:= 125\n", "size_of_range_of_sample_mean_as_duplicates:=125\n", "range_of_sample_mean:=[1, 5/3, 7/3, 3, 11/3, 13/3, 5, 17/3, 19/3, 7, 23/3, 25/3, 9]\n", "size_of_range_of_sample_mean:=13\n", "distribution_of_sample_mean:=[[1, 1/125], [5/3, 3/125], [7/3, 6/125], [3, 2/25], [11/3, 3/25], [13/3, 18/125], [5, 19/125], [17/3, 18/125], [19/3, 3/25], [7, 2/25], [23/3, 6/125], [25/3, 3/125], [9, 1/125]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=8/3\n", "[1/3, 1, 5/3, 7/3, 3, 11/3, 13/3, 5, 17/3, 19/3, 7, 23/3, 25/3, 9, 29/3]\n", "[0, 1/125, 3/125, 6/125, 2/25, 3/25, 18/125, 19/125, 18/125, 3/25, 2/25, 6/125, 3/125, 1/125, 0]\n", "sage: population=[(1,1),(3,1),(5,1),(7,1),(9,1)]\n", "sage: function_of_sample(population,4)\n", "number_of_sample:=4\n", "size_of_product_of_population:= 625\n", "size_of_sample_space_of_product_of_population:= 625\n", "size_of_range_of_sample_mean_as_duplicates:=625\n", "range_of_sample_mean:=[1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5, 11/2, 6, 13/2, 7, 15/2, 8, 17/2, 9]\n", "size_of_range_of_sample_mean:=17\n", "distribution_of_sample_mean:=[[1, 1/625], [3/2, 4/625], [2, 2/125], [5/2, 4/125], [3, 7/125], [7/2, 52/625], [4, 68/625], [9/2, 16/125], [5, 17/125], [11/2, 16/125], [6, 68/625], [13/2, 52/625], [7, 7/125], [15/2, 4/125], [8, 2/125], [17/2, 4/625], [9, 1/625]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=2\n", "[1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5, 11/2, 6, 13/2, 7, 15/2, 8, 17/2, 9, 19/2]\n", "[0, 1/625, 4/625, 2/125, 4/125, 7/125, 52/625, 68/625, 16/125, 17/125, 16/125, 68/625, 52/625, 7/125, 4/125, 2/125, 4/625, 1/625, 0]\n", "sage: population=[(1,1),(3,1),(5,1),(7,1),(9,1)]\n", "sage: function_of_sample(population,5)\n", "number_of_sample:=5\n", "size_of_product_of_population:= 3125\n", "size_of_sample_space_of_product_of_population:= 3125\n", "size_of_range_of_sample_mean_as_duplicates:=3125\n", "range_of_sample_mean:=[1, 7/5, 9/5, 11/5, 13/5, 3, 17/5, 19/5, 21/5, 23/5, 5, 27/5, 29/5, 31/5, 33/5, 7, 37/5, 39/5, 41/5, 43/5, 9]\n", "size_of_range_of_sample_mean:=21\n", "distribution_of_sample_mean:=[[1, 1/3125], [7/5, 1/625], [9/5, 3/625], [11/5, 7/625], [13/5, 14/625], [3, 121/3125], [17/5, 37/625], [19/5, 51/625], [21/5, 64/625], [23/5, 73/625], [5, 381/3125], [27/5, 73/625], [29/5, 64/625], [31/5, 51/625], [33/5, 37/625], [7, 121/3125], [37/5, 14/625], [39/5, 7/625], [41/5, 3/625], [43/5, 1/625], [9, 1/3125]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=8/5\n", "[3/5, 1, 7/5, 9/5, 11/5, 13/5, 3, 17/5, 19/5, 21/5, 23/5, 5, 27/5, 29/5, 31/5, 33/5, 7, 37/5, 39/5, 41/5, 43/5, 9, 47/5]\n", "[0, 1/3125, 1/625, 3/625, 7/625, 14/625, 121/3125, 37/625, 51/625, 64/625, 73/625, 381/3125, 73/625, 64/625, 51/625, 37/625, 121/3125, 14/625, 7/625, 3/625, 1/625, 1/3125, 0]\n", "sage: population=[(1,1),(3,1),(5,1),(7,1),(9,1)]\n", "sage: function_of_sample(population,6)\n", "number_of_sample:=6\n", "size_of_product_of_population:= 15625\n", "size_of_sample_space_of_product_of_population:= 15625\n", "size_of_range_of_sample_mean_as_duplicates:=15625\n", "range_of_sample_mean:=[1, 4/3, 5/3, 2, 7/3, 8/3, 3, 10/3, 11/3, 4, 13/3, 14/3, 5, 16/3, 17/3, 6, 19/3, 20/3, 7, 22/3, 23/3, 8, 25/3, 26/3, 9]\n", "size_of_range_of_sample_mean:=25\n", "distribution_of_sample_mean:=[[1, 1/15625], [4/3, 6/15625], [5/3, 21/15625], [2, 56/15625], [7/3, 126/15625], [8/3, 246/15625], [3, 426/15625], [10/3, 666/15625], [11/3, 951/15625], [4, 1246/15625], [13/3, 1506/15625], [14/3, 1686/15625], [5, 1751/15625], [16/3, 1686/15625], [17/3, 1506/15625], [6, 1246/15625], [19/3, 951/15625], [20/3, 666/15625], [7, 426/15625], [22/3, 246/15625], [23/3, 126/15625], [8, 56/15625], [25/3, 21/15625], [26/3, 6/15625], [9, 1/15625]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=4/3\n", "[2/3, 1, 4/3, 5/3, 2, 7/3, 8/3, 3, 10/3, 11/3, 4, 13/3, 14/3, 5, 16/3, 17/3, 6, 19/3, 20/3, 7, 22/3, 23/3, 8, 25/3, 26/3, 9, 28/3]\n", "[0, 1/15625, 6/15625, 21/15625, 56/15625, 126/15625, 246/15625, 426/15625, 666/15625, 951/15625, 1246/15625, 1506/15625, 1686/15625, 1751/15625, 1686/15625, 1506/15625, 1246/15625, 951/15625, 666/15625, 426/15625, 246/15625, 126/15625, 56/15625, 21/15625, 6/15625, 1/15625, 0]\n", "sage: population=[(1,1),(3,1),(5,1),(7,1),(9,1)]\n", "sage: function_of_sample(population,7)\n", "number_of_sample:=7\n", "size_of_product_of_population:= 78125\n", "size_of_sample_space_of_product_of_population:= 78125\n", "size_of_range_of_sample_mean_as_duplicates:=78125\n", "range_of_sample_mean:=[1, 9/7, 11/7, 13/7, 15/7, 17/7, 19/7, 3, 23/7, 25/7, 27/7, 29/7, 31/7, 33/7, 5, 37/7, 39/7, 41/7, 43/7, 45/7, 47/7, 7, 51/7, 53/7, 55/7, 57/7, 59/7, 61/7, 9]\n", "size_of_range_of_sample_mean:=29\n", "distribution_of_sample_mean:=[[1, 1/78125], [9/7, 7/78125], [11/7, 28/78125], [13/7, 84/78125], [15/7, 42/15625], [17/7, 91/15625], [19/7, 7/625], [3, 304/15625], [23/7, 483/15625], [25/7, 707/15625], [27/7, 959/15625], [29/7, 1211/15625], [31/7, 1428/15625], [33/7, 63/625], [5, 1627/15625], [37/7, 63/625], [39/7, 1428/15625], [41/7, 1211/15625], [43/7, 959/15625], [45/7, 707/15625], [47/7, 483/15625], [7, 304/15625], [51/7, 7/625], [53/7, 91/15625], [55/7, 42/15625], [57/7, 84/78125], [59/7, 28/78125], [61/7, 7/78125], [9, 1/78125]]\n", "mean_of_sample_mean:=5\n", "variance_of_sample_mean:=8/7\n", "[5/7, 1, 9/7, 11/7, 13/7, 15/7, 17/7, 19/7, 3, 23/7, 25/7, 27/7, 29/7, 31/7, 33/7, 5, 37/7, 39/7, 41/7, 43/7, 45/7, 47/7, 7, 51/7, 53/7, 55/7, 57/7, 59/7, 61/7, 9, 65/7]\n", "[0, 1/78125, 7/78125, 28/78125, 84/78125, 42/15625, 91/15625, 7/625, 304/15625, 483/15625, 707/15625, 959/15625, 1211/15625, 1428/15625, 63/625, 1627/15625, 63/625, 1428/15625, 1211/15625, 959/15625, 707/15625, 483/15625, 304/15625, 7/625, 91/15625, 42/15625, 84/78125, 28/78125, 7/78125, 1/78125, 0]\n", "sage: # population의 크기가 5라고 할 때 sample의 크기가 8 이상일 때는 상당한 시간이 걸린다.\n", "```\n", "\n" ], "metadata": { "id": "Doswn6G8hlQ8" } }, { "cell_type": "markdown", "source": [], "metadata": { "id": "SGI6fAuJhquT" } } ] }