If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

P 가 평면 α 밖의 점이고 직선 a 가 평면 α 위에 있을 때 P 에서 평면 α 와 직선 a 에 내린 수선의 발을 각각 M, N 이라고 하면 선분 MN 과 a 는 수직이다.
(If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.)

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

Min Eun Gi : https://min7014.github.io

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

If P is a point outside the plane α and the straight line a is on the plane α, then the perpendicular from P to the plane α and the straight line a If the feet are M and N respectively, the lines MN and a are perpendicular.

Github:
https://min7014.github.io/math20230126001.html
Click or paste URL into the URL search bar, and you can see a picture moving.

