When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

P 가 평면 α 밖의 점이고 직선 a 가 평면 α 위에 있을 때 P 에서 평면 α 에 내린 수선의 발을 M 이라 하고 M 에서 직선 a 에 내린 수선의 발을 N 이라고 하면 선분 PN 과 a 는 수직이다.
(When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.)

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

When P is a point outside the plane α and the straight line a is on the plane α, the foot of the perpendicular drawn from P to the plane α is Suppose that M is N and that the foot of the perpendicular drawn from M to straight line a is N , then the line segments PN and a are perpendicular.

Github:
$\underline{\text { https://min7014.github.io/math20230114001.html }}$
Click or paste URL into the URL search bar, and you can see a picture moving.

