(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the

 tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.$$
\begin{aligned}
& \text { 준선이 } x=-p \text { 이고 초점이 }(p, 0) \text { 일 때, 포물선 } \\
& \text { 상의 점 }\left(x_{1}, y_{1}\right) \text { 에서의 접선의 방정식을 } \\
& \text { 구하여라.[기하적 접근] }
\end{aligned}
$$

((When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.)
(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.
(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the

 tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the

 tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the

 tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the

 tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the

 tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the

 tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the

 tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the

 tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.$$
\begin{aligned}
& \int_{\mathrm{H}\left(-p, y_{1}\right)}^{\mathrm{P}\left(x_{1}, y_{1}\right)} \\
& \stackrel{\mathrm{HF}}{:}:\left(0-y_{1}\right)\left(x-x_{1}\right)-\{p-(-p)\}\left(y-y_{1}\right)=0 \\
& \{p-(-p)\}\left(x-x_{1}\right)+\left(0-y_{1}\right)\left(y-y_{1}\right)=0 \\
& 2 p\left(x-x_{1}\right)-y_{1}\left(y-y_{1}\right)=0 \\
& 2 p x-2 p x_{1}-y_{1} y+y_{1}^{2}=0 \\
& 2 p x-2 p x_{1}-y_{1} y+4 p x_{1}=0 \quad\left(\because y_{1}^{2}=4 p x_{1}\right) \\
& 2 p x+2 p x_{1}-y_{1} y=0 \\
& 2 p x+2 p x_{1}=y_{1} y \quad 2 p\left(x+x_{1}\right)=y_{1} y \\
& \therefore y_{1} y=2 p\left(x+x_{1}\right)
\end{aligned}
$$

(When a directrix is $x=-p$ and a focus is $(p, 0)$, find the equation for the tangent line to the parabola at a given point $\left(x_{1}, y_{1}\right)$.

Github:
https://min7014.github.io/math20220301001.html
Click or paste URL into the URL search bar, and you can see a picture moving.

