마지막 변경일 2018년 5월 7일

** 뷔퐁의 바늘 문제 **

Geogebra와 수학의 시각화 책의 3.5소절 내용임. http://min7014.iptime.org/math/2017063002.htm

가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. <u>https://goo.gl/fSu59r</u> http://min7014.iptime.org/math/2018011301.pdf

자료의 수정이 필요한 부분이 있으면 언제든지 민은기 E-mail : min7014@nate.com 이경수 E-mail : ksteach81@gmail.com 으로 연락주시면 감사하겠습니다.

강의록을 보기전에 프로그램 설치를 반드시 읽어보시고 꼭 지오지브라 클래 식 5를 설치하시기 바랍니다.

https://goo.gl/wqwJ6v

http://min7014.iptime.org/math/2018011001.pdf * 주요변경내역 *

2017.06.24 Geogebra와 수학의 시각화 책에 엮어 출간.

차 례

차례		i
제1장 Geo	ogebra를 활용한 통계	1
1.1 뷔퐁	의 바늘 문제	2
1.1.1	문제해결과정	2
1.1.2	바늘을 떨어뜨릴 판 제작하기	4
1.1.3	랜덤으로 바늘의 중점 위치 정하기 ․․․․․․․․․․․	6
1.1.4	랜덤으로 바늘의 기울기 정하기	7
1.1.5	바늘 그리기	8
1.1.6	평행선과 만나는 바늘의 수 세기	10
1.1.7	바늘 던지기 버튼 만들기	11
1.1.8	스프레드시트를 이용하여 표 구성하기	12

찾아보기

제1장

Geogebra를 활용한 통계

1.1 뷔퐁의 바늘 문제

뷔퐁의 바늘문제는 18세기 프랑스의 수학자 조르주루이 르크레르 드 뷔퐁(Georges-Louis Leclerc, Comte de Buffon)이 제시한 문제로 바닥에 일정한 간격의 평행 선이 있고, 여기에 바늘을 떨어뜨렸을 때 평행선과 바늘이 만날 확률을 묻는 문제입니다. 이번 장에서는 먼저 뷔퐁의 바늘 문제를 수학적으로 해결할 수 있 는 방법을 생각해 보겠습니다. 그리고 Geogebra를 사용하여 수천 개의 바늘을 임의로 바닥에 떨어뜨리는 상황을 자료로 만들어 보고, 그것을 통한 실험적 결 과와 수학적으로 해결한 결과를 서로 비교해 보도록 하겠습니다.

1.1.1 문제해결과정

평행선의 간격을 *d*, 바늘의 길이를 *l*이라 하고, *d* > *l*이라 가정하겠습니다. 바 늘을 떨어뜨렸을 때, 바늘의 중심이 파란색 영역에 떨어질 때만 생각해도 일반 성을 잃지 않습니다.

그림에서 *x*는 평행선에서 바늘의 중심까지의 거리, *θ*는 바늘이 평행선의 오른 쪽 방향과 이루는 각도입니다. 바늘이 평행선과 만나는 상황을 생각해 보았을 때, 바늘의 중심이 평행선과 아무리 가까이 있더라도 *θ*가 매우 작으면 바늘은 평행선과 만날 수 없을 것입니다. 반대로 $\theta \uparrow \frac{\pi}{2}$ 에 가까운 값을 가져서 거의 수 직으로 세워진 형태라고 하더라도 중심이 평행선에서 멀리 떨어져 있으면 역시 바늘과 평행선은 만날 수 없을 것입니다. 즉, 바늘이 평행선과 만나기 위해서 는 x와 θ 가 모두 적절한 값을 가져야 한다고 볼 수 있습니다. 그러면 평행선과 바늘이 만날 수 있는 조건을 조금 더 구체적으로 생각해 보겠습니다. 평행선과 바늘의 중심 사이의 거리 x의 범위는 [0, d/2]이고, 바늘과 평행선이 이루는 각 θ 의 범위는 $[0, \pi]$ 입니다. 바늘이 평행선과 만나기 위해서는 위의 그림에서 알 수 있듯이 부등식 $x \leq \frac{l}{2} \sin \theta$ 을 만족해야 합니다. θ 와 x를 각각 가로축, 세로축 으로 하는 좌표평면에 위 부등식의 영역을 나타내 보면 다음 그림과 같습니다.

따라서 바늘과 평행선이 만날 확률은 기하학적 확률의 정의에 따라 다음과 같 음을 알 수 있습니다.

$$P = \frac{\frac{l}{2} \int_0^{\pi} \sin\theta d\theta}{\frac{d\pi}{2}}$$

$$=\frac{l}{d\pi}\int_0^\pi\sin\theta\mathrm{d}\theta$$

$$=\frac{2l}{d\pi}$$

특히,
$$l = d$$
이면 $P = \frac{2}{\pi}$ 이고, $l = \frac{d}{2}$ 이면 $P = \frac{1}{\pi}$ 입니다.

1.1.2 바늘을 떨어뜨릴 판 제작하기

바늘을 떨어뜨릴 평행선이 그려진 판을 만들어 보겠습니다. 우선 좌표축을 보 이지 않게 설정하고, 입력창에 A=(-1,-1)과 같은 형식으로 네 점 A(-1,-1), B(16,-1), C(16,12), D(-1,12)를 생성합니다. 그리고 아래와 같이 입력하여 네 점을 꼭짓점으로 하는 다각형을 만들어 줍니다.

다각형[A,B,C,D]

그리고 기하창의 설정사항에서 *x*축, *y*축의 최댓값과 최솟값을 다음과 같이 설 정합니다.

	최솟값	최댓값
x축	$\mathbf{x}(\mathbf{A})$	$1.8^{*}x(C)$
y축	y(A)	y(C)

위의 설정에 의해서 앞으로 기하창의 크기가 변경되더라도 기하창에 나타나는 *x*축, *y*축의 최댓값과 최솟값은 변하지 않게 됩니다. 그러나 *x*축과 *y*축의 눈금 비율이 1:1이 되도록 하기 위해 기하창의 가로와 세로의 비율을 1.8 : 1 로 맞 추어 주는 것이 좋겠습니다. 이때, 정확한 비율로 맞출 수는 없으므로 격자의 모양이 정사각형으로 보이게 해주면 됩니다. 다시 본론으로 돌아가서 다각형 의 꼭짓점 A, B, C, D와 선분 a, b, c, d를 보이지 않게 합니다. 이제 판 위에 간격이 1인 평행선 들을 그리겠습니다. 이를 위해 먼저 입력창에 다음과 같이 입력합니다.

선분[(0, 1), (15, 1)]	
※선분[<점>, <점>]	

그러면 그림과 같이 선분이 하나 그려집니다. 이러한 선분을 y = 0부터 y = 11까지 그리려고 합니다. 어떤 규칙에 의한 반복적인 작업이 필요한 경우 '수열' 이란 명령어를 이용하면 효율적으로 해결할 수 있습니다. 바로 전에 그렸던 선 분을 더블 클릭하여 재정의 창을 띄운 다음 아래와 같이 수정합니다.

|수열[선분[(0, t), (15, t)],t,0,11]

※수열[<표현식>, <변수>,<시작값>,<끝값>]

이 명령에 의해 12개의 선분이 한 번에 그려졌습니다. 수열이란 명령어에 의해 선분의 양 끝점의 *y*좌표에 0부터 11까지의 정수가 차례로 입력되었기 때문입 니다. 그러면 그려진 선분의 두께와 색상을 조절하여 눈에 잘 띄도록 설정하 고, 리스트의 이름을 'Line'으로 수정하겠습니다.

1.1.3 랜덤으로 바늘의 중점 위치 정하기

이 절에서는 바늘을 임의로 떨어뜨리는 상황을 표현해 보도록 하겠습니다. 먼 저 Geogebra의 입력창에 다음과 같이 입력하여 바늘중점의 위치가 가로 [0,15], 세로 [-0.5,11.5] 범위에서 임의로 정해지도록 합니다.

(랜덤균등분포[0,15], 랜덤균등분포[-0.5,11.5])			
※랜덤균등분포[<최솟값>,<최댓값>] : 주어진 범위의 균등분포(연속확률분			
포)에서 임의로 확률변수 추출			

키보드에서 [Ctrl]+[R]을 누를 때마다 한 점이 설정한 범위 내에서 불규칙하 게 이동합니다 그런데 많은 수의 바늘을 떨어뜨리려면 그 만큼의 바늘중점이 필요합니다. 따라서 '수열' 명령어를 이용하여 이를 표현해 보도록 하겠습니다.

위에서 생성한 점을 더블 클릭하여 재정의 창을 띄우고, 다음 내용을 입력하여 3000개의 바늘중점의 위치를 임의로 지정합니다.

수열[(랜덤균등분포[0,15], 랜덤균등분포[-0.5,11.5]),t,1,3000] ※수열[<표현식>, <변수>,<시작값>,<끝값>]

가독성을 높이기 위해 리스트의 이름은 'Mpoint'로 수정합니다. 그리고 점은 좌표만 필요한 것이므로 대수창에서 Mpoint의 파란색 원을 클릭하여 점들이 보이지 않도록 합니다.

1.1.4 랜덤으로 바늘의 기울기 정하기

바늘의 떨어진 모양을 결정하기 위해서는 중점의 위치와 기울어진 각도가 필 요합니다. 앞서 바늘중점의 위치를 정했으니 이번에는 3000개 바늘의 기울어 진 각도를 임의로 지정하겠습니다. 입력창에 다음과 같이 입력합니다.

수열[랜덤균등분포[0,π],t,1,3000]

그리고 생성된 리스트의 이름을 'Angle' 로 바꾸어 줍니다.

1.1.5 바늘 그리기

그러면 앞 절에서 만든 두 리스트를 바탕으로 바늘을 그려보도록 하겠습니다. 우선 바늘의 길이는 평행선 간격의 k배로 합니다. 즉, 바늘의 길이를 l, 평행 선의 간격을 d라 할 때, l=kd입니다. 기하창에 k라는 이름의 슬라이더를 생성 하고 범위는 [0.2, 2] 범위의 수로 설정합니다. 이제 바늘의 양 끝점의 좌표를 결정하겠습니다. 평행선의 간격이 1이므로 바늘 절반의 길이는 k/2입니다. 따 라서 바늘의 양 쪽 점의 좌표는 중점에서 $\left(\pm \frac{k}{2}\cos\theta, \pm \frac{k}{2}\sin\theta\right)$ 인 위치에 있습 니다. 이것을 바탕으로 입력창에 다음 내용을 입력합니다.

((x(원소[Mpoint, 1]) - k/2*cos(원소[Angle, 1]), y(원소[Mpoint, 1]) - k/2*sin(원소[Angle, 1]))

((x(원소[Mpoint, 1]) + k/2*cos(원소[Angle, 1]), y(원소[Mpoint, 1]) + k/2*sin(원소[Angle, 1]))

※원소[<리스트>,<원소의 위치>]

위 그림과 같이 판 위에 두 점이 생성되었습니다. [Ctrl]+[R]을 누를 때마다 두 점이 같은 간격을 유지하면서 불규칙적으로 이동하는 것을 볼 수 있습니다. 이 두 점은 리스트 Mpoint와 Angle에서 각 첫 번째 원소로 만들어진 바늘의 양 끝점입니다. 이제 두 점을 삭제하고, 입력창에 다음 내용을 입력합니다.

선분[(x(원소[Mpoint, 1]) - k/2*cos(원소[Angle, 1]), y(원소[Mpoint, 1]) - k/2 *sin(원소[Angle, 1])), (x(원소[Mpoint, 1]) + k/2 *cos(원소[Angle, 1]), y(원소[Mpoint, 1]) + k/2 *sin(원소[Angle, 1]))]

이 명령어는 길어서 복잡하게 보일 수 있지만 앞에서 찾은 두 점을 선분으로 이어주는 명령어가 추가되었을 뿐입니다.

위 그림과 같이 그림과 같이 선분이 만들어 집니다. 슬라이더에서 k값을 늘려 보면 선분의 길이가 길어지는 것을 확인할 수 있습니다. 역시 리스트 Mpoint 와 Angle의 각 첫 번째 원소로 만들어진 선분입니다. 리스트 Mpoint와 Angle 의 각 원소로 이루어진 3000개의 선분을 모두 나타내기 위해서 '수열' 명령어 를 활용하여 위의 내용을 다음과 같이 수정합니다.

수열[선분[(x(원소[Mpoint, t]) - k/2*cos(원소[Angle, t]), y(원소[Mpoint, t]) - k/2*sin(원소[Angle, t])), (x(원소[Mpoint, t]) + k/2*cos(원소[Angle, t]), y(원소[Mpoint, t]) + k/2*sin(원소[Angle, t]))],t,1,3000]

아래 그림과 같이 판 위에 많은 수의 바늘이 생성됨을 볼 수 있습니다. 마지 막으로 생성된 바늘 리스트의 이름을 'Needle'로 수정합니다.

1.1.6 평행선과 만나는 바늘의 수 세기

평행선과 만나는 바늘의 수를 세기에 앞서 다음 명령어를 살펴보겠습니다. 입 력창에 다음과 같이 입력합니다.

G1 = floor[1.4]

G2=floor[2.7]

G3=floor[-1.4]

G1의 결과는 1, G2의 결과는 2, G3의 결과는 -2로 나타납니다. 즉, 명령어 'floor'는 입력한 수를 넘지 않는 최대의 정수를 나타냄을 알 수 있습니다. 이 제 대수창에서 G1, G2, G3를 삭제하고, 본격적으로 'floor'명령어를 활용하여 평행선과 만나는 바늘의 수를 세어 보겠습니다. 판 위에 그려진 평행선의 y좌 표는 0부터 11까지의 정수입니다. 만약 바늘 양 끝점의 y좌표에서 정수 부분 의 값이 서로 다르다면 그 바늘은 평행선을 가로 지르는 것입니다. 반대로 y 좌표의 정수부분이 서로 같다면 양 끝점이 평행선 사이에 놓이는 것이므로 이 경우 바늘은 평행선과 만나지 않는 것입니다. 이 때, 바늘 양 끝점의 y좌표는 연속확률변수이므로 정확히 정수가 될 확률은 이론적으로 0입니다. 따라서 바 늘 끝 점의 y좌표가 정수가 되어 평행선과 만나는 상황은 고려하지 않도록 하 겠습니다. 이제 입력창에 다음과 같이 입력합니다.

수열[조건[floor(y(원소[Mpoint, t]) - k/2 *sin(원소[Angle, t])) == floor(y(원소[Mpoint, t]) + k/2*sin(원소[Angle, t])), 0, 1], t, 1, 3000]

※조건[<조건>,<조건이 성립될 때 생성할 대상>,<조건이 성립되지 않을 때 생성할 대상>]

조금 복잡하게 보일 수 있지만 차근차근 살펴보도록 하겠습니다. 우선 '조건' 명령어의 첫 번째 인수 자리에 'floor' 명령어가 있습니다. floor를 사용해 바늘 양 끝점의 *y*좌표의 정수부분을 구하였고, '조건' 명령어를 통해 앞서 구한 두 정수의 값이 같으면 0을 출력하고, 다르면 1을 출력하도록 하고 있습니다. 가장 바깥쪽에는 수열 명령어가 있어 3000개 바늘 모두에 대해서 검사를 해 줍니다. 마지막으로 만들어진 리스트의 이름을 'Cross'으로 수정합니다.

1.1.7 바늘 던지기 버튼 만들기

바늘을 던지는 버튼을 만들어 보겠습니다. '버튼' 도구를 사용하여 캡션에 'Drop' 을 입력하고, 스크립트에는 '구성새로고침[]'을 입력합니다.

생성된 버튼을 클릭하면 바늘이 새로 던져지는 것을 확인할 수 있습니다

1.1.8 스프레드시트를 이용하여 표 구성하기

마지막 절에서는 3000개의 선분 중에 평행선과 만나는 선분의 개수와 상대도 수를 보여주는 표를 구성해 보겠습니다. 입력창에 다음 내용을 입력합니다.

Count=세기조건[x == 1, Cross]
Total=세기조건[x==0 V x==1, Cross]
Ratio=Count / Total

Ratio의 설정사항에서 기호연산을 해제하여 소수의 형식으로 만들어 줍니다. 그리고 스프레드시트 창을 열고 그림과 같이 빈 공간에 다음 내용을 입력합니 다.

바늘의 총 수(T)	=Total
평행선과 만나는 바늘의 수(C)	=Count
상대도수(C/T)	=Count/Total

스프레드시트의 내용을 표로 만들어 기하창의 여백에 위치시킵니다. 그리고 상 대도수가 더 구체적으로 표시되도록 소수점 아래 넷째 자리까지 숫자가 나타 나도록 설정해 줍니다.

* <u>^</u>	프레드시트창		파일 편집 보기 선택사항 도구 윈도우 도움말
J_X		В	• •
1	바늘의 총수(T)	3000	L 1 소수점 아래 자리
2	평행선과 만나는 바늘의 수(C)	1910	▶ 대수창 이용 도하기 2 소수점 아래 자리
3	상대도수(C/T)	A1·B3	- 리스트 🕢 글자 크기 🧧 3 소수점 아래 자리
4			└─○ Angle = {0 🐰 언어 🔹 • 4 소수점 아래 자리
5		🗈 복사	- Cross = (1 ··································
6		불이기 ·································	
7		· 실 같라내기 · / · · · · · · · · · · · · · · · · · ·	● Manoint = // ♥ 설정사항 저장 15 소수점 아래 자리
8			● Needle = // 기본성정사항으로 되돌리기 · · · · · · · · · · ·
9	리스트 정이 가 두	반들기 🔸	·····································
10	이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	🐁 대상 보이기	그 사각형 5 자리 유효숫자
11	<u> </u>	Ⅲ 스프레드시트에 기록	- 다각형1 = 221 10 자리 유효숫자
12	다각선	🔉 설정사항	그 선문 15 자리 유효숫자
13	연산표		

마지막으로 격자를 보이지 않게 처리하고 버튼과 슬라이더 그리고 표를 적당한 위치에 배치해 줍니다. 그러면 뷔퐁의 바늘문제를 실험해 볼 수 있는 자료가 모두 완성됩니다.

이론적 계산결과의 의하면 l=d일 때, P = $\frac{2}{\pi} \approx 0.6366$ 인데 이 값에 거의 근접 한 값이 나오는 것을 볼 수 있습니다.

찿아보기

floor, 11

구성새로고침, 11

랜덤균등분포, 6

- 선분, 5
- 수열, 6
- 원소, 8
- 조건, 11

그동안 했던 강의 자료 중 일부를 책으로 엮음. http://min7014.iptime.org/math/2017063002.htm

https://ggbm.at/gsARCQs5

책자료실(지오지브라 튜브)

[참고] [민은기 선생님의 수학자료실] Homepage : <u>http://min7014.iptime.org</u> Facebook Page : <u>https://www.facebook.com/mineungimath</u> YouTube Channel : <u>https://goo.gl/JpzU5i</u>

[이경수 선생님 블로그] http://blog.naver.com/evening07

[GeoGebra 5.0.363.0-3D (03 June 2017) 설치파일] Installer : <u>https://goo.gl/YvjsCV</u> (From Home Page) Installer : <u>https://goo.gl/n69yEl</u> (From Google Drive)

[GeoGebra 5.0.462.0-d (02 May 2018) 설치파일] Installer : <u>https://goo.gl/SsdFBd</u> (From Home Page) Portable : <u>https://goo.gl/FxJxES</u>(From Home Page) Installer : <u>https://goo.gl/dqtbfk</u> (From Google Drive) Portable : <u>https://goo.gl/zwundc</u>(From Google Drive)