마지막 변경일 2018년 5월 7일

** 독립시행의 확률 **

Geogebra와 수학의 시각화 책의 3.3소절 내용임. http://min7014.iptime.org/math/2017063002.htm

가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. <u>https://goo.gl/oejeu3</u> http://min7014.iptime.org/math/2018010809.pdf

자료의 수정이 필요한 부분이 있으면 언제든지 민은기 E-mail : min7014@nate.com 이경수 E-mail : ksteach81@gmail.com 으로 연락주시면 감사하겠습니다.

강의록을 보기전에 프로그램 설치를 반드시 읽어보시고 꼭 지오지브라 클래 식 5를 설치하시기 바랍니다.

https://goo.gl/wqwJ6v

http://min7014.iptime.org/math/2018011001.pdf * 주요변경내역 *

2017.06.24 Geogebra와 수학의 시각화 책에 엮어 출간.

차례

차례	i
제1장 Geogebra를 활용한 통계	1
1.1 독립시행의 확률	2
1.1.1 베르누이 시행	2
1.1.2 n번의 베르누이 시행 구성하기	2
1.1.3 상대도수 구하기	4
1.1.4 히스토그램 그리기	7
1.1.5 표그리기(1)	9
1.1.6 표그리기(2)	.0
1.1.7 자동 버튼 만들기	.2
찾아보기 1	5

제1장

Geogebra를 활용한 통계

1.1 독립시행의 확률

독립시행이란 같은 조건에서 어떤 시행을 반복할 때 각 시행의 결과가 다른 시 행의 결과에 영향을 주지 않는 시행을 뜻합니다. 예를 들어 같은 동전을 50번 던졌을 때 각 동전을 던지는 시행은 독립시행입니다. 왜냐하면 동전을 던졌을 때 나오는 결과는 다음 결과에 영향을 주지 않기 때문입니다. 이번 장에서는 n번의 독립시행에서 원하는 결과가 r번 나올 확률을 실험을 통해 관찰해 보는 자료를 만들어 보겠습니다.

1.1.1 베르누이 시행

어떤 시행이 2가지의 결과만으로 나타날 때, 이 시행을 베르누이 시행이라 합니다. 예를 들어 동전을 던졌을 때, 나올 수 있는 결과는 앞면과 뒷면이므로 동전을 던지는 시행은 베르누이 시행입니다. 이때, 동전의 앞뒷면처럼 확률이 서로 같을 필요는 없습니다. 예를 들어 어떤 실험의 결과가 양성이 아니면 음 성으로 나온다고 할 때, 두 가지 결과의 확률은 서로 다를 수 있지만 이것 역시 베르누이 시행입니다. 여기에서 다루게 될 독립시행의 확률은 베르누이 시행을 바탕으로 하며, 이번 장에서는 베르누이 시행의 결과를 편의상 성공과 실패라 하겠습니다.

1.1.2 n번의 베르누이 시행 구성하기

첫 번째로 성공확률이 p인 베르누이 시행을 n번 반복했을 때 그 결과가 임의 로 발생되도록 하는 부분을 만들어 보겠습니다. 먼저 시행횟수와 성공확률을 설정하는 슬라이더를 만듭니다. 이때, 시행횟수 n은 최솟값 1, 최댓값 10의 정 수로 정의하고 성공확률 p는 최솟값 0, 최댓값 1의 수로 정의합니다.

술라이더 🔟	술라이더 🛛
◎수 이름	◎수 이름
◎각 n	◎각 P
◎정수 ■랜덤	◎정수 ■랜덤
구간 슬라이더 애니메이션	구간 슬라이더 애니메이션
최솟값: 1 최댓값: 10 증가: 1	최솟값: 0 최댓값: 1 증가: 0.1
확인 취소	확인 취소

Geogebra의 내장함수로 '랜덤이항분포' 라는 것이 있습니다. 이는 성공확률이 p인 독립시행을 n번 반복했을 때 성공횟수를 출력하는 함수입니다. 여기서 시 행횟수를 1로 하면 한 번의 베르누이 시행이 되는 것입니다. 입력창에 다음 내 용을 입력해 봅니다.

랜덤이항분포[1,p]	
※랜덤이항분포[<시행횟수>,<확률>]	

키보드에서 [Ctrl]+[R]를 입력하여 여러 번 다시 계산을 해봅니다. 생성된 수 의 변화를 관찰해 보면 1(성공) 또는 0(실패)의 값을 가지면서 불규칙적으로 변하는 것을 볼 수 있습니다. 생성된 수를 삭제하고 다음을 입력합니다.

수열[랜덤이항분포[1, p], t, 1, n]	
※수열[<표현식>,<변수>,<처음값>,<끝값>]	

그러면 n번의 베르누이 시행의 결과가 하나의 리스트로 만들어 집니다. 가독 성을 높이기 위해 이 리스트의 이름을 'Result'로 바꾸어 줍니다.

1.1.3 상대도수 구하기

n번의 독립시행 중 r번 성공할 확률을 실험을 통해 구하기 위해서는 n번의 시 행을 매우 많이 반복해야 합니다. 이 시행 중에 r번 성공하는 경우의 비율 즉, r번 성공의 상대도수가 어떤 값에 가까워지는지를 보고자 하는 것입니다. 우선 n번 시행의 시뮬레이션에서 성공횟수를 알기 위해 입력창에 다음을 입력합니 다.

Success=세기조건[x==1, Result]	
※세기조건[<조건>,<리스트>]	

이와 같이 리스트 Result 에서 1의 개수를 세면 성공횟수를 알 수 있습니다. 키보드에서 [Ctrl]+[R]를 입력하여 함수가 제대로 작동하는지를 확인해 봅니 다. 이제 Success 값을 누적시키는 리스트를 생성하겠습니다. 입력창에 다음을 입력합니다.

4

|Scount={} ※세기조건[<조건>,<리스트>]

그리고 '+n'이란 이름의 버튼을 만들어 스크립트에 다음을 입력합니다.

구성새로고침[] 값설정[Scount,추가[Scount,Success]]

※값설정[<대상1>,<대상2>] : 대상1의 값을 대상2의 값으로 대치 ※구성새로고침[] : 새로 고침을 실행

위에서 구성새로고침 명령어를 사용한 이유는 '+n' 버튼을 클릭할 때마다 리 스트 result가 갱신되어야하기 때문입니다. 버튼을 여러 번 클릭해 보면 성공 횟수가 리스트 Scount 안에 순차적으로 누적되는 것을 확인할 수 있습니다. 다 음으로 각 성공횟수를 포함하는 계급의 양 끝값을 정의하겠습니다. 계급의 양 끝값은 {-0.5, 0.5, 1.5, ···, n+0.5}입니다. 따라서 입력창에 다음과 같이 입력합니다.

Class=수열[-0.5 + t, t, 0, n + 1]	
---------------------------------	--

변수 t에 0부터 n+1까지의 정수를 입력하라는 것이므로 이를 입력하면 대수 창에 계급의 양 끝값의 리스트가 만들어집니다. 그리고 입력창에 다음을 입력 합니다.

Frequency=도수[Class, Scount] ※도수[<계급 경계의 리스트>,<원자료의 리스트>]

이 명령으로 Scount 리스트에서 Class 계급에 해당하는 도수가 차례대로 리 스트 Frequency에 저장이 됩니다. 각 성공횟수의 도수에 대한 상대도수를 구 하기 위해서는 전체도수를 구해야 합니다. 따라서 입력창에 다음을 입력합니 다.

Total=합[Frequency]	
※합[<리스트>]	

이제 마지막으로 성공횟수의 도수에 대한 상대도수 리스트를 만들어 보겠습 니다. 입력창에 다음을 입력합니다.

Relativefre=수열[원소[Frequency, t] / Total, t, 1, n + 1]	
※원소[<리스트>,<원소의 위치>]	

이는 위에서 구한 각 계급의 도수를 전체도수로 나누어주는 과정입니다. n번 의 시행에서 성공횟수는 0번에서 n번까지이므로 리스트 Frequency는 n+1개의 원소를 갖습니다. 따라서 원소의 위치에 1부터 n+1까지의 정수를 넣어주어야 하는 것입니다. 이것으로 성공횟수에 대한 상대도수를 구해 보았습니다.

독립시행의 확률

1.1.4 히스토그램 그리기

앞 절에서 구한 상대도수를 히스토그램으로 나타내 보도록 하겠습니다. 입력 창에 다음과 같이 입력합니다.

Histogram=히스토그램[Class, Relativefre]	
※히스토그램[<계급의 경계값의 리스트>,<높이값의 리스트>]	

히스토그램의 높이는 상대도수 값이기 때문에 항상 1보다 크지 않은 값으로 나 타납니다. 따라서 위의 왼쪽 그림과 같은 축 설정으로는 납작한 히스토그램이 그려질 수밖에 없습니다. *y*축의 눈금간격을 충분히 늘려주는 방법으로 히스토 그램을 확대시켜 보겠습니다. '기하창 이동' 도구를 클릭하고 축을 드래그하면 위의 오른쪽 그림과 같이 *y*축의 눈금간격이 늘어나면서 적당한 형태의 히스토 그램이 그려지게 됩니다. 다음으로 시행횟수가 n이고, 성공확률이 p인 이항분 포를 그려 보겠습니다. 이론적으로 독립시행에서 성공횟수를 확률변수로 하는 분포는 이항분포입니다. 이 자료의 목적은 n번의 독립시행을 반복적으로 임의 발생시킴으로써 r번 성공할 확률이 수렴하는 값을 관찰해 보는 것이지만 이는 성공횟수에 대한 분포가 실제로 이항분포를 만들어가는지를 관찰하는 것과 마 찬가지입니다. 그래서 입력창에 다음을 입력하여 이항분포를 그리겠습니다.

Binomial=이항분포[n, p] ※이항분포[<시행횟수>,<성공확률>]

이항분포의 설정사항에서 불투명도를 0으로 설정하고 선을 좀 더 굵게 설정 합니다. 그리고 상대도수의 히스토그램도 색상과 투명도를 적당히 설정해 줍 니다.

8

1.1.5 표 그리기(1)

이번 절에서는 시행의 결과를 '○', '×'로 보여주는 표를 구성하겠습니다. 먼 저 시행순서를 리스트로 만들어 주기 위해 입력창에 다음과 같이 입력합니다.

Order=수열[t, t, 1, n]

그러면 1부터 n까지의 정수로 구성된 Order 리스트가 생성됩니다. 그리고 슬 라이더로 n값을 바꾸어주면 이에 따라 Order 리스트도 조정됨을 볼 수 있습 니다. 다음으로 Result 리스트에서 0은 'X'로 1은 '○'으로 표시하는 리스트를 구성하겠습니다. 입력창에 다음을 입력합니다.

SF=수열[조건[원소[Result, t]==1, "〇", "X"], t, 1, n]	
※조건[<조건>,<조건이 성립될 때 생성할 대상>,<조건이 성립되지 않을 대	대
생성할 대상>]	

'조건' 명령으로 Result 리스트의 t번째 원소가 1인지 아닌지가 판단되고 만약 1이면 '○', 1이 아니면 'X'가 출력됩니다. 그리고 '수열' 명령에 의해서 변수 t 에 1부터 n까지의 정수가 입력되어 그 결과가 SF라는 이름의 리스트로 생성 되는 것입니다. 참고로 Geogebra에서 따옴표 사이의 문자는(함수식이라 하더 라도) 텍스트로 처리를 합니다. 그리고 ○는 한글 자음 'ㅁ'을 입력하고 키보 드에서 한자 키를 누르면 찾을 수 있습니다. 이제 Order와 SF를 행으로 하는 표를 만들겠습니다. 먼저 다음과 같은 방법으로 리스트의 첫 번째 원소 자리에 각 항목의 이름을 넣어줍니다.

Row1=추가["시행", Order]	

Row2=추가["결과", SF]

※추가[<대상>,<리스트>] : 대상을 리스트의 왼쪽에 추가 ※추가[<리스트>,<대상>] : 대상을 리스트의 오른쪽에 추가

그러면 Order 리스트와 SF 리스트의 왼쪽 첫 번째 자리에 각각의 항목 이름이 들어간 Row1, Row2 리스트가 생성됩니다. 이제 이들을 바탕으로 아래와 같이 표를 구성합니다.

Table1=\mathbf{H}[Row1,Row2] ※표[<리스트>,<리스트>,···]

1.1.6 표 그리기(2)

앞 절에 이어서 성공횟수에 대한 수학적 확률과 상대도수를 서로 비교할 수 있는 표를 만들어 보겠습니다. n번의 독립시행에서 r번 성공할 확률은 수학적 으로 _nC_rp^r (1 - p)^{n-r}와 같이 계산합니다. 따라서 성공횟수에 대한 확률값 리 스트는 다음과 같은 방법으로 만들겠습니다.

Prob=수열[조합[n,t]*p**t*(1-p)**(n-t),t,0,n]

수학적 확률에 대한 리스트가 만들어졌다면 다음 명령어를 각각 입력하여 표 에 들어갈 3개의 행들을 만들어 줍니다.

Row3=추가["성공횟수", 수열[t, t, 0, n]]

Row4=추가["상대도수", Relativefre]

Row5=추가["수학적 확률", Prob]

각 행의 리스트가 만들어졌다면 다음 내용을 입력하여 표를 구성합니다.

 Table2=표[Row3,Row4,Row5]

 ※표[<리스트>,<리스트>,···]

1.1.7 자동 버튼 만들기

마지막 절에서는 시행을 자동으로 처리해주는 버튼을 만들어 보겠습니다. 우 선 'auto'란 이름의 슬라이더를 만들어 줍니다. 설정은 기본설정으로 합니다. 그리고 슬라이더의 설정사항에서 스크립트에 다음 내용을 입력합니다.

슬라이더를 움직일 때마다 Total 변수의 값이 증가하는 것을 확인할 수 있습 니다. 슬라이더의 이름은 'auto'로 수정하겠습니다. 다음으로 슬라이더를 제어 하는 버튼을 만들겠습니다. 'Auto'와 'Stop'이란 이름의 버튼을 생성하고 스크 립트에 다음 내용을 각각 입력합니다.

애니메이션시작[auto,true]

애니메이션시	작[auto,false]
--------	---------------

() 버튼 전 캡션: Auto	값 버튼 조조 캡션: Auto
지오지브라 스크립트:	지오지브라 스크립트:
1 에니메이션시작[auto,true]	1 애니메이션시작[auto,false]
확인 취소	확인 취소

12

'애니메이션시작' 이란 명령어에서 두 번째 인자는 true 또는 false입니다. true 이면 애니메이션이 시작되고, false이면 애니메이션이 멈춥니다. 다음으로 초기 화 버튼을 만들겠습니다. 모든 상황을 처음으로 되돌리려면 무엇을 초기화 해 야할까요? 바로 리스트 Scount입니다. 리스트 Scount에 의해 계급별 빈도수가 계산되고, 그것에 의해 상대도수와 히스토그램이 그려지기 때문입니다. 'Reset'이란 이름의 버튼을 추가로 생성하여 스크립트에 다음 내용을 입력합니다.

 $Scount = \{\}$

지금까지 만든 버튼들이 정상적으로 작동하는지를 확인해 봅니다. 마지막으로 버튼과 텍스트의 위치 그리고 좌표축의 설정들을 적당히 설정해 주면 완성된 자료를 얻을 수 있습니다.

찿아보기

구성새로고침, 5, 12 도수, 6 독립시행, 2 랜덤이항분포, 3 베르누이 시행, 2 세기조건, 4 애니메이션시작, 12 원소, 6 이항분포, 8 조건, 9 추가, 10 표, 10, 11 합, 6 히스토그램, 7

그동안 했던 강의 자료 중 일부를 책으로 엮음. http://min7014.iptime.org/math/2017063002.htm

https://ggbm.at/gsARCQs5

책자료실(지오지브라 튜브)

[참고] [민은기 선생님의 수학자료실] Homepage : <u>http://min7014.iptime.org</u> Facebook Page : <u>https://www.facebook.com/mineungimath</u> YouTube Channel : <u>https://goo.gl/JpzU5i</u>

[이경수 선생님 블로그] http://blog.naver.com/evening07

[GeoGebra 5.0.363.0-3D (03 June 2017) 설치파일] Installer : <u>https://goo.gl/YvjsCV</u> (From Home Page) Installer : <u>https://goo.gl/n69yEl</u> (From Google Drive)

[GeoGebra 5.0.462.0-d (02 May 2018) 설치파일] Installer : <u>https://goo.gl/SsdFBd</u> (From Home Page) Portable : <u>https://goo.gl/FxJxES</u>(From Home Page) Installer : <u>https://goo.gl/dqtbfk</u> (From Google Drive) Portable : <u>https://goo.gl/zwundc</u>(From Google Drive)