The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\).
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)
The equation for hyperbola when the two focal points are $(0, k), (0, -k)$ and the difference in length is given by $2b$
The equation for hyperbola when the two focal points are $(0, k), (0, -k)$ and the difference in length is given by $2b$.

Min Eun Gi : https://min7014.github.io
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\).
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)
The equation for hyperbola when the two focal points are $(0, k), (0, -k)$ and the difference in length is given by $2b$
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\).
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\).
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[
|\sqrt{x^2 + (y-k)^2} - \sqrt{x^2 + (y+k)^2}| = 2b
\]

\[
\sqrt{x^2 + (y-k)^2} - \sqrt{x^2 + (y+k)^2} = \pm 2b
\]

\[
\sqrt{x^2 + (y-k)^2} = \sqrt{x^2 + (y+k)^2} \pm 2b
\]
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[
\left| \sqrt{x^2 + (y-k)^2} - \sqrt{x^2 + (y+k)^2} \right| = 2b
\]

\[
\sqrt{x^2 + (y-k)^2} - \sqrt{x^2 + (y+k)^2} = \pm 2b
\]

\[
\sqrt{x^2 + (y-k)^2} = \sqrt{x^2 + (y+k)^2} \pm 2b
\]

\[
x^2 + (y-k)^2 = x^2 + (y+k)^2 \pm 4b\sqrt{x^2 + (y+k)^2} + 4b^2
\]
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[
\sqrt{x^2 + (y - k)^2} - \sqrt{x^2 + (y + k)^2} = 2b
\]

\[
\sqrt{x^2 + (y - k)^2} = \sqrt{x^2 + (y + k)^2} \pm 2b
\]

\[
x^2 + (y - k)^2 = x^2 + (y + k)^2 \pm 4b \sqrt{x^2 + (y + k)^2 + 4b^2}
\]

\[
-4ky - 4b^2 = \pm 4b \sqrt{x^2 + (y + k)^2}
\]
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[
\left| \sqrt{x^2 + (y - k)^2} - \sqrt{x^2 + (y + k)^2} \right| = 2b
\]

\[
\sqrt{x^2 + (y - k)^2} - \sqrt{x^2 + (y + k)^2} = \pm 2b
\]

\[
\sqrt{x^2 + (y - k)^2} = \sqrt{x^2 + (y + k)^2} \pm 2b
\]

\[
x^2 + (y - k)^2 = x^2 + (y + k)^2 \pm 4b\sqrt{x^2 + (y + k)^2} + 4b^2
\]

\[
-4ky - 4b^2 = \pm 4b\sqrt{x^2 + (y + k)^2}
\]

\[
-k^2y - b^2 = \pm b\sqrt{x^2 + (y + k)^2}
\]
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[|\sqrt{x^2 + (y-k)^2} - \sqrt{x^2 + (y+k)^2}| = 2b \]

\[\sqrt{x^2 + (y-k)^2} - \sqrt{x^2 + (y+k)^2} = \pm 2b \]

\[\sqrt{x^2 + (y-k)^2} = \sqrt{x^2 + (y+k)^2} \pm 2b \]

\[x^2 + (y-k)^2 = x^2 + (y+k)^2 \pm 4b \sqrt{x^2 + (y+k)^2} + 4b^2 \]

\[-4ky - 4b^2 = \pm 4b \sqrt{x^2 + (y+k)^2} \]

\[-ky - b^2 = \pm b \sqrt{x^2 + (y+k)^2} \]

\[k^2y^2 + 2b^2ky + b^4 = b^2x^2 + b^2y^2 + 2b^2ky + b^2k^2 \]

Min Eun Gi : https://min7014.github.io
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[
\left| \sqrt{x^2 + (y-k)^2} - \sqrt{x^2 + (y+k)^2} \right| = 2b
\]

\[
\sqrt{x^2 + (y-k)^2} - \sqrt{x^2 + (y+k)^2} = \pm 2b
\]

\[
\sqrt{x^2 + (y-k)^2} = \sqrt{x^2 + (y+k)^2} \pm 2b
\]

\[
x^2 + (y-k)^2 = x^2 + (y+k)^2 \pm 4b\sqrt{x^2 + (y+k)^2} + 4b^2
\]

\[
-4ky - 4b^2 = \pm 4b\sqrt{x^2 + (y+k)^2}
\]

\[
-k^2 - b^2 = \pm b\sqrt{x^2 + (y+k)^2}
\]

\[
k^2y^2 + 2b^2ky + b^4 = b^2x^2 + b^2y^2 + 2b^2ky + b^2k^2
\]

\[
-b^2x^2 + (k^2 - b^2)y^2 = b^2(k^2 - b^2)
\]
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[
\left| \sqrt{x^2 + (y - k)^2} - \sqrt{x^2 + (y + k)^2} \right| = 2b
\]

\[
\sqrt{x^2 + (y - k)^2} - \sqrt{x^2 + (y + k)^2} = \pm 2b
\]

\[
\sqrt{x^2 + (y - k)^2} = \sqrt{x^2 + (y + k)^2} \pm 2b
\]

\[
x^2 + (y - k)^2 = x^2 + (y + k)^2 \pm 4b \sqrt{x^2 + (y + k)^2} + 4b^2
\]

\[
-4ky - 4b^2 = \pm 4b \sqrt{x^2 + (y + k)^2}
\]

\[
-k^2 y - b^2 = \pm b \sqrt{x^2 + (y + k)^2}
\]

\[
k^2 y^2 + 2b^2 k y + b^4 = b^2 x^2 + b^4 y^2 + 2b^2 k y + b^4 k^2
\]

\[
-b^2 x^2 + (k^2 - b^2) y^2 = b^2 (k^2 - b^2)
\]

\[
b^2 x^2 - (k^2 - b^2) y^2 = -b^2 (k^2 - b^2)
\]
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[
\left| \sqrt{x^2 + (y-k)^2} - \sqrt{x^2 + (y+k)^2} \right| = 2b
\]

\[
\sqrt{x^2 + (y-k)^2} - \sqrt{x^2 + (y+k)^2} = \pm 2b
\]

\[
\sqrt{x^2 + (y-k)^2} = \sqrt{x^2 + (y+k)^2} \pm 2b
\]

\[
x^2 + (y-k)^2 = x^2 + (y+k)^2 \pm 4b \sqrt{x^2 + (y+k)^2} + 4b^2
\]

\[
-4ky - 4b^2 = \pm 4b \sqrt{x^2 + (y+k)^2}
\]

\[
-k^2 - b^2 = \pm b \sqrt{x^2 + (y+k)^2}
\]

\[
k^2 y^2 + 2b^2 ky + b^4 = b^2 x^2 + b^2 y^2 + 2b^2 ky + b^2 k^2
\]

\[
-b^2 x^2 + (k^2 - b^2)y^2 = b^2 (k^2 - b^2)
\]

\[
b^2 x^2 - (k^2 - b^2)y^2 = -b^2 (k^2 - b^2)
\]

Let \(a^2 = k^2 - b^2\)
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[
\sqrt{x^2 + (y - k)^2} - \sqrt{x^2 + (y + k)^2} = 2b \\
\sqrt{x^2 + (y - k)^2} - \sqrt{x^2 + (y + k)^2} = \pm 2b \\
\sqrt{x^2 + (y - k)^2} = \sqrt{x^2 + (y + k)^2} \pm 2b \\
x^2 + (y - k)^2 = x^2 + (y + k)^2 \pm 4b \sqrt{x^2 + (y + k)^2} + 4b^2 \\
-4ky - 4b^2 = \pm 4b \sqrt{x^2 + (y + k)^2} \\
-ky - b^2 = \pm b \sqrt{x^2 + (y + k)^2} \\
k^2y^2 + 2b^2ky + b^4 = b^2x^2 + b^2y^2 + 2b^2ky + b^2k^2 \\
-b^2x^2 + (k^2 - b^2)y^2 = b^2(k^2 - b^2) \\
b^2x^2 - (k^2 - b^2)y^2 = -b^2(k^2 - b^2) \\
\text{Let } \alpha^2 = k^2 - b^2 \\
\therefore \frac{x^2}{\alpha^2} - \frac{y^2}{b^2} = -1
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[
\left| \sqrt{x^2 + (y - k)^2} - \sqrt{x^2 + (y + k)^2} \right| = 2b
\]

\[
\sqrt{x^2 + (y - k)^2} - \sqrt{x^2 + (y + k)^2} = \pm 2b
\]

\[
\sqrt{x^2 + (y - k)^2} = \sqrt{x^2 + (y + k)^2} \pm 2b
\]

\[
x^2 + (y - k)^2 = x^2 + (y + k)^2 \pm 4b\sqrt{x^2 + (y + k)^2} + 4b^2
\]

\[-4ky - 4b^2 = \pm 4b\sqrt{x^2 + (y + k)^2}
\]

\[-ky - b^2 = \pm b\sqrt{x^2 + (y + k)^2}
\]

\[k^2 y^2 + 2b^2 ky + b^4 = b^2 x^2 + b^2 y^2 + 2b^2 ky + b^2 k^2
\]

\[-b^2 x^2 + (k^2 - b^2) y^2 = b^2 (k^2 - b^2)
\]

\[b^2 x^2 - (k^2 - b^2) y^2 = -b^2 (k^2 - b^2)
\]

Let \(a^2 = k^2 - b^2\)

\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1
\]
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[
\left| \sqrt{x^2 + (y - k)^2} - \sqrt{x^2 + (y + k)^2} \right| = 2b
\]

\[
\sqrt{x^2 + (y - k)^2} - \sqrt{x^2 + (y + k)^2} = \pm 2b
\]

\[
\sqrt{x^2 + (y - k)^2} = \sqrt{x^2 + (y + k)^2} \pm 2b
\]

\[
x^2 + (y - k)^2 = x^2 + (y + k)^2 \pm 4b\sqrt{x^2 + (y + k)^2} + 4b^2
\]

\[
-4ky - 4b^2 = \pm 4b\sqrt{x^2 + (y + k)^2}
\]

\[
-ky - b^2 = \pm b\sqrt{x^2 + (y + k)^2}
\]

\[
k^2y^2 + 2b^2ky + b^4 = b^2x^2 + b^2y^2 + 2b^2ky + b^2k^2
\]

\[
-b^2x^2 + (k^2 - b^2)y^2 = b^2(k^2 - b^2)
\]

\[
b^2x^2 - (k^2 - b^2)y^2 = -b^2(k^2 - b^2)
\]

Let \(a^2 = k^2 - b^2\)

\[
\therefore \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1
\]
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1
\]
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

The equation of the hyperbola is given by:

\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1
\]
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

\[\left| \sqrt{x^2 + (y-k)^2} - \sqrt{x^2 + (y+k)^2} \right| = 2b \]

\[\sqrt{x^2 + (y-k)^2} - \sqrt{x^2 + (y+k)^2} = \pm 2b \]

\[\sqrt{x^2 + (y-k)^2} = \sqrt{x^2 + (y+k)^2} \pm 2b \]

\[x^2 + (y-k)^2 = x^2 + (y+k)^2 \pm 4b\sqrt{x^2 + (y+k)^2} + 4b^2 \]

\[-4ky - 4b^2 = \pm 4b\sqrt{x^2 + (y+k)^2} \]

\[-ky - b^2 = \pm b\sqrt{x^2 + (y+k)^2} \]

\[k^2y^2 + 2b^2ky + b^4 = b^2x^2 + b^2y^2 + 2b^2ky + b^2k^2 \]

\[-b^2x^2 + (k^2 - b^2)y^2 = b^2(k^2 - b^2) \]

\[b^2x^2 - (k^2 - b^2)y^2 = -b^2(k^2 - b^2) \]

Let \(a^2 = k^2 - b^2\)

\[\therefore \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \]
The equation for hyperbola when the two focal points are \((0, k), (0, -k)\) and the difference in length is given by \(2b\)

Github:
https://min7014.github.io/math20200610001.html

Click or paste URL into the URL search bar, and you can see a picture moving.