두 초점 $\mathrm{F}(0, c)$ 이고 $\mathrm{F}^{\prime}(0,-c)$ 으로부터 거리의 합이 $2 b$ 인 타원의 방정식을 구하여라.

(Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.)

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

$$
\overline{\mathrm{PF}}+\overline{\mathrm{PF}^{\prime}}=2 b
$$

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is
$2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is
$2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is
$2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is
$2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is
$2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is
$2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is
$2 b$.

$$
2 b r^{\overline{\mathrm{PF}}+\overline{\mathrm{PF}}}=2 b
$$

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is
$2 b$.

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is
$2 b$.

$$
\begin{aligned}
& \overline{\mathrm{PF}}+\overline{\mathrm{PF}^{\prime}}=2 b \\
& \sqrt{2} \\
& \sqrt{x^{2}+(y-c)^{2}}=2 b-\sqrt{x^{2}+(y+c)^{2}} \\
& x^{2}+(y-c)^{2}==4 b^{2}-4 b \sqrt{x^{2}+(y+c)^{2}}+x^{2}+(y+c)^{2} \\
&(y-c)^{2}=4 b^{2}-4 b \sqrt{x^{2}+(y+c)^{2}}+(y+c)^{2}
\end{aligned}
$$

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is
$2 b$.

$$
\begin{aligned}
& \overline{\mathrm{PF}}+\overline{\mathrm{PF}^{\prime}}=2 b \\
&2)^{2} \\
& \sqrt{x^{2}+(y-c)^{2}}=2 b-\sqrt{x^{2}+(y+c)^{2}} \\
& x^{2}+(y-c)^{2}=4 b^{2}-4 b \sqrt{x^{2}+(y+c)^{2}}+x^{2}+(y+c)^{2} \\
&(y-c)^{2}=4 b^{2}-4 b \sqrt{x^{2}+(y+c)^{2}}+(y+c)^{2} \\
& \sqrt{x^{2}+(y-c)^{2}}+\sqrt{x^{2}+(y+c c)^{2}}=2 b
\end{aligned}
$$

Find the equation of the ellipse where the sum of the distances from $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0,-c)$ is $2 b$.

Github:
https://min7014.github.io/math20200423001.html

Click or paste URL into the URL search bar, and you can see a picture moving.

