한 원에서 두 현의 교점이 있을 때 두 현 교점으로부터 각 현의 두 끝점까지의 거리의 곱은 같다.
(When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.)

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

$$
a: a^{\prime}=b^{\prime}: b
$$

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

$$
\begin{aligned}
& a: a^{\prime}=b^{\prime}: b \\
& a \times b=a^{\prime} \times b^{\prime}
\end{aligned}
$$

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

When there is an intersection of two chords in a circle, products of distances from the intersection to two endpoints of each chord are equal.

Min Eun Gi : https://min7014.github.io

Github:
https://min7014.github.io/math20200218001.html

Click or paste URL into the URL search bar, and you can see a picture moving.

