함수
(Function)

Function

```
 Start
End
```


Function

```
* Start > End
```


Definition (Function)

```
* Start
    \ End
```

Definition (Function)
A function f

```
* Start
     End
```

Definition (Function)

A function f is

```
 Start
    D End
```

Definition (Function)

A function f is a rule

Definition (Function)

A function f is a rule that assigns to each element x

Definition (Function)

A function f is a rule that assigns to each element x in a set D

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element,

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$,

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function.

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)
The set D is called the domain of the function. The number $f(x)$ is the value

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)
The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f}

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)
The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x}

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)
The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)
The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of \boldsymbol{x}."

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of \boldsymbol{x}." The range of f is

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)
The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number is

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number is in the domain

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number is in the domain of a function f

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number is in the domain of a function f is called

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number is in the domain of a function f is called an independent variable.

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number is in the domain of a function f is called an independent variable. A symbol

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number is in the domain of a function f is called an independent variable. A symbol that represents

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number is in the domain of a function f is called an independent variable. A symbol that represents a number

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number is in the domain of a function f is called an independent variable. A symbol that represents a number in the range

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number is in the domain of a function f is called an independent variable. A symbol that represents a number in the range of f

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number is in the domain of a function f is called an independent variable. A symbol that represents a number in the range of f is called

Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Definition (Domain, Value of f at x, Range, Independent variable)

The set D is called the domain of the function. The number $f(x)$ is the value of \boldsymbol{f} at \boldsymbol{x} and is read " f of x." The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

Definition (Independent variable, Dependent variable)

A symbol that represents an arbitrary number is in the domain of a function f is called an independent variable. A symbol that represents a number in the range of f is called a dependent variable.

Function

$>$ Home $>$ Start $>$ End

Function

\rightarrow Home $\xlongequal{\perp}$ Start \triangle End
A function f
\rightarrow Home \rightarrow Start \rightarrow End
A function f from X

A function f from X to Y

A function f from X to Y is a subset

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one

- Start
\rightarrow End
A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair

Start $>$ End
A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair in the subset.

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair in the subset.
In other words,

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair in the subset.
In other words, for every x

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair in the subset.
In other words, for every x in X

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair in the subset.
In other words, for every x in X there is

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair in the subset.
In other words, for every x in X there is exactly one element y

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair in the subset.
In other words, for every x in X there is exactly one element y in Y

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair in the subset.
In other words, for every x in X there is exactly one element y in Y such that

, Home
 - Start $>$ End

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair in the subset.
In other words, for every x in X there is exactly one element y in Y such that the ordered pair (x, y)

, Home
 - Start $>$ End

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair in the subset.
In other words, for every x in X there is exactly one element y in Y such that the ordered pair (x, y) is contained

, Home
 - Start $>$ End

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair in the subset.
In other words, for every x in X there is exactly one element y in Y such that the ordered pair (x, y) is contained in the subset

, Home

A function f from X to Y is a subset of the Cartesian product $\mathrm{X} \times \mathrm{Y}$ subject to the following condition:
Every element of X is the first component of one and only one ordered pair in the subset.
In other words, for every x in X there is exactly one element y in Y such that the ordered pair (x, y) is contained in the subset defining the function f.

Function

Function

Home
 Start
 End

$\mathrm{X} \times \mathrm{Y}$

Function

```
    Home > Start > End
X }\times\textrm{Y}
```


Function

```
\bulletHome > Start > End
X}\times\textrm{Y}=
```


Function

```
    >Home > Start > End
X}\times\textrm{Y}={(x,y
```


Function

$>$ Home $>$ Start $>$ End
$X \times Y=\{(x, y) \mid$

Function

$>$ Home $>$ Start $>$ End
$X \times Y=\{(x, y) \mid x \in X$

Function

```
> Home > Start > End
X}\times\textrm{Y}={(x,y)|x\in\textrm{X},y\in\textrm{Y}
```


Function

Home $>$ Start $>$ End
$X=\{(x, y) \mid x \in X, y \in Y$

Function

\rightarrow Home \rightarrow Start \rightarrow End
$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product

Function

\rightarrow Home \rightarrow Start \rightarrow End
$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$

Function

```
\Home > Start > End
```

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f

Function

\rightarrow Home \rightarrow Start \rightarrow End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function

Function

\rightarrow Home \rightarrow Start \rightarrow End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X

Function

\rightarrow Home \rightarrow Start \rightarrow End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

Function

```
Home > Start > End
```

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y . !

Function

```
Home > Start > End
```

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .
$\left\{\begin{array}{l}f \subset \\ \end{array}\right.$

Function

\rightarrow Home \rightarrow Start \rightarrow End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .
$\left\{\begin{array}{l}f \subset X \times Y \\ \end{array}\right.$

Function

\rightarrow Home $>$ Start \rightarrow End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}
\end{array}\right.
$$

Function

\rightarrow Home $>$ Start \rightarrow End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X},
\end{array}\right.
$$

Function

\rightarrow Home \rightarrow Start \rightarrow End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y}
\end{array}\right.
$$

Function

\rightarrow Home \rightarrow Start \rightarrow End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }
\end{array}\right.
$$

Function

\rightarrow Home \rightarrow Start \rightarrow End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f
\end{array}\right.
$$

Function

\rightarrow Home \rightarrow Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

Function

\rightarrow Home \rightarrow Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y}
\end{array}, \$\right. \text {. }
\end{array}\right.
$$

Function

\rightarrow Home $>$ Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \{x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\{\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f
\end{aligned}
$$

\rightarrow Home $>$ Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\begin{aligned}
& f f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\begin{array}{l}
\forall \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

\rightarrow Home $>$ Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f
\end{array}\right.
\end{array}\right.
$$

\rightarrow Home $>$ Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow
\end{array}\right.
\end{array}\right.
$$

\rightarrow Home \perp Start \rightarrow End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

\rightarrow Home $>$ Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f
$$

\rightarrow Home $>$ Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f:
$$

\rightarrow Home $>$ Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X}
$$

$$
\begin{aligned}
& f f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

\rightarrow Home $>$ Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow
$$

\rightarrow Home $>$ Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow \mathrm{Y},
$$

\rightarrow Home $>$ Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X}
$$

\rightarrow Home $>$ Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f}
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
\end{array}\right.
$$

\rightarrow Home $>$ Start $>$ End

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad \begin{array}{l}
\quad \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
\end{array} \\
\quad \mathrm{X} \text { Domain }
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\mathrm{X} \text { Domain } \\
\mathrm{Y}
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \quad \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\mathrm{X} \text { Domain } \\
\mathrm{Y} \text { Codomain } \\
f
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\quad \mathrm{X} \text { Domain } \\
\mathrm{Y} \text { Codomain } \\
f:
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\quad \mathrm{X} \text { Domain } \\
\mathrm{Y} \text { Codomain } \\
\quad f: x
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\quad \mathrm{X} \text { Domain } \\
\mathrm{Y} \text { Codomain } \\
\quad f: x \longrightarrow
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\quad \mathrm{X} \text { Domain } \\
\quad \mathrm{Y} \text { Codomain } \\
\quad f: x \longrightarrow y,
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\mathrm{X} \text { Domain } \\
\mathrm{Y} \text { Codomain } \\
\quad f: x \longrightarrow y, x
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\quad \mathrm{X} \text { Domain } \\
\mathrm{Y} \text { Codomain } \\
\quad f: x \longrightarrow y, x \xrightarrow{f}
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\quad \mathrm{X} \text { Domain } \\
\mathrm{Y} \text { Codomain } \\
\quad f: x \longrightarrow y, x \xrightarrow{f} y,
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\quad \mathrm{X} \text { Domain } \\
\mathrm{Y} \text { Codomain } \\
\quad f: x \longrightarrow y, x \xrightarrow{f} y, y
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\quad \mathrm{X} \text { Domain } \\
\mathrm{Y} \text { Codomain } \\
\quad f: x \longrightarrow y, x \xrightarrow{f} y, y=
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\quad \mathrm{X} \text { Domain } \\
\mathrm{Y} \text { Codomain } \\
\quad f: x \longrightarrow y, x \xrightarrow{f} y, y=f
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\quad \mathrm{X} \text { Domain } \\
\quad \mathrm{Y} \text { Codomain } \\
\quad f: x \longrightarrow y, x \xrightarrow{f} y, y=f(
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\quad \mathrm{X} \text { Domain } \\
\quad \mathrm{Y} \text { Codomain } \\
\quad f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right. \\
\quad f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
\quad \mathrm{X} \text { Domain } \\
\quad \mathrm{Y} \text { Codomain } \\
\quad f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
\end{array}\right.
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$$
f(x)
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value
$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right. \\
& f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y} \\
& \text { X Domain } \\
& \text { Y Codomain } \\
& f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x) \\
& f(x) \text { The value of a function } f
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x
$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable y
$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \stackrel{f}{\rightarrow} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable $f(\mathrm{X})$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$f(\mathrm{X})=$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$f(\mathrm{X})=\{$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$f(\mathrm{X})=\{y$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable

$$
f(X)=\{y \mid
$$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable

$$
f(\mathrm{X})=\{y \mid \exists x
$$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$f(\mathrm{X})=\{y \mid \exists x \in$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X}$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X}$ s.t.

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable

$$
f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X} \text { s.t. } y=f(x)
$$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable

$$
f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X} \text { s.t. } y=f(x)\}
$$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X}$ s.t. $y=f(x)\}=$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable

$$
f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X} \text { s.t. } y=f(x)\}=\{
$$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable

$$
f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X} \text { s.t. } y=f(x)\}=\{f(x)
$$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable

$$
f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X} \text { s.t. } y=f(x)\}=\{f(x) \mid
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable

$$
f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X} \text { s.t. } y=f(x)\}=\{f(x) \mid x
$$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable

$$
f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X} \text { s.t. } y=f(x)\}=\{f(x) \mid x \in
$$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable

$$
f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X} \text { s.t. } y=f(x)\}=\{f(x) \mid x \in \mathrm{X}
$$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable

$$
f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X} \text { s.t. } y=f(x)\}=\{f(x) \mid x \in \mathrm{X}\}
$$

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X}$ s.t. $y=f(x)\}=\{f(x) \mid x \in \mathrm{X}\}$
Image

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X}$ s.t. $y=f(x)\}=\{f(x) \mid x \in \mathrm{X}\}$
Image of f

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X}$ s.t. $y=f(x)\}=\{f(x) \mid x \in \mathrm{X}\}$
Image of f or
$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X}$ s.t. $y=f(x)\}=\{f(x) \mid x \in \mathrm{X}\}$
Image of f or Range

$$
\begin{aligned}
& \{f \subset \mathrm{X} \times \mathrm{Y} \\
& \left\{\forall x \in \mathrm { X } , \exists ! y \in \mathrm { Y } \text { s.t. } (x , y) \in f \left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.\right.
\end{aligned}
$$

$\mathrm{X} \times \mathrm{Y}=\{(x, y) \mid x \in \mathrm{X}, y \in \mathrm{Y}\}:$ The Cartesian product $\mathrm{X} \times \mathrm{Y}$ f is a function from X to Y .

$$
\left\{\begin{array}{l}
f \subset \mathrm{X} \times \mathrm{Y} \\
\forall x \in \mathrm{X}, \exists!y \in \mathrm{Y} \text { s.t. }(x, y) \in f\left\{\begin{array}{l}
\forall x \in \mathrm{X}, \exists y \in \mathrm{Y} \text { s.t. }(x, y) \in f \\
\left(x, y_{1}\right) \in f \text { and }\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}
\end{array}\right.
\end{array}\right.
$$

$$
f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X} \xrightarrow{f} \mathrm{Y}
$$

X Domain
Y Codomain

$$
f: x \longrightarrow y, x \xrightarrow{f} y, y=f(x)
$$

$f(x)$ The value of a function f at x
x The independent variable
y The dependent variable
$f(\mathrm{X})=\{y \mid \exists x \in \mathrm{X}$ s.t. $y=f(x)\}=\{f(x) \mid x \in \mathrm{X}\}$
Image of f or Range of f

Github:
https://min7014.github.io/math20190810112.html

Click or paste URL into the URL search bar, and you can see a picture moving.

