집합과 원소 (Set and Element(Member))

• Set and Element(Member): a set

• Set and Element(Member): a set may be viewed as

 Set and Element(Member): a set may be viewed as any well-defined collection of

• Set and Element(Member): a *set* may be viewed as any well-defined collection of objects.

• Set and Element(Member): a *set* may be viewed as any well-defined collection of objects. the objects

• Set and Element(Member): a *set* may be viewed as any well-defined collection of objects. the objects are called

 Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements

• Set and Element(Member): a *set* may be viewed as any well-defined collection of objects. the objects are called the *elements* or

 Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of

• Set and Element(Member): a *set* may be viewed as any well-defined collection of objects. the objects are called the *elements* or *members* of the set.

- Set and Element(Member): a *set* may be viewed as any well-defined collection of objects. the objects are called the *elements* or *members* of the set.
- Finite set:

Set and Element(Member): a set may be viewed as any
well-defined collection of objects. the objects are called the
elements or members of the set.

• Finite set: a set

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set:

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- φ:

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- \bullet ϕ : the set with no elements

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- \bullet ϕ : the set with no elements is

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- \bullet ϕ : the set with no elements is the *empty set*

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- \bullet ϕ : the set with no elements is the *empty set* or

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- \bullet n(S)

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- \bullet n(S) (

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- \bullet n(S) (S

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.):

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- \bullet $a \in S$:

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S : a$

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) :the number of elements of S
- $a \in S$: a is a member of S.

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$:

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S : a$

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- \bullet $A \subset B$:

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- \bullet $A \subset B : A$

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B : A$ is a subset of

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B$: A is a subset of (or included in

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B$: A is a subset of (or included in) B.

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B$: A is a subset of (or included in) B. $x \in A$

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B : A$ is a subset of (or included in) B. $x \in A \Rightarrow$

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects, the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B$: A is a subset of (or included in) B. $x \in A \Rightarrow x \in B$

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B : A$ is a subset of (or included in) B. $x \in A \Rightarrow x \in B$
- \bullet A = B:

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B : A$ is a subset of (or included in) B. $x \in A \Rightarrow x \in B$
- \bullet A = B : A and B

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B : A$ is a subset of (or included in) B. $x \in A \Rightarrow x \in B$
- \bullet A = B : A and B are equal.

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B : A$ is a subset of (or included in) B. $x \in A \Rightarrow x \in B$
- A = B : A and B are equal. $A \subset B$

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B : A$ is a subset of (or included in) B. $x \in A \Rightarrow x \in B$
- A = B : A and B are equal. $A \subset B$ and

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B : A$ is a subset of (or included in) B. $x \in A \Rightarrow x \in B$
- A = B : A and B are equal. $A \subset B$ and $B \subset A$

- Set and Element(Member): a set may be viewed as any
 well-defined collection of objects. the objects are called the
 elements or members of the set.
- Finite set: a set that has a finite number of elements
- Infinite set: a set which is not a finite set
- ϕ : the set with no elements is the *empty set* or *null set*.
- n(S) (S is a finite set.) : the number of elements of S
- $a \in S$: a is a member of S.
- $a \notin S$: a is not a member of S.
- $A \subset B : A$ is a subset of (or included in) B. $x \in A \Rightarrow x \in B$
- A = B : A and B are equal. $A \subset B$ and $B \subset A$

END